Delamination is the main responsible for structural failure of composites having a laminar structure. In the present work, polyamide (Nylon 66) nanofibers, even impregnated with uncrosslinked nitrile butadiene rubber (NBR), are interleaved into epoxy-based carbon fiber reinforced polymer (CFRP) laminates with the aim to counteract the delamination phenomenon. The performance of nano-modified composites using both the nanofibrous mat types, that is, Nylon 66 and NBR-impregnated Nylon 66 membranes, is investigated. Mode I loading tests show a significant improvement of the interlaminar fracture toughness of rubber-modified CFRPs, especially in the G(I,)(R) (up to +151%). The improvement in the G(I,)(C) is less pronounced, but still significant (up to +80%). The achieved results are very encouraging and pave the way to the use of such Nylon-NBR hybrid mats for hindering delamination.

Polyamide Nanofibers Impregnated with Nitrile Rubber for Enhancing CFRP Delamination Resistance

Ortolani, J;Maccaferri, E;Mazzocchetti, L
;
Benelli, T;Brugo, TM;Zucchelli, A;Giorgini, L
2022

Abstract

Delamination is the main responsible for structural failure of composites having a laminar structure. In the present work, polyamide (Nylon 66) nanofibers, even impregnated with uncrosslinked nitrile butadiene rubber (NBR), are interleaved into epoxy-based carbon fiber reinforced polymer (CFRP) laminates with the aim to counteract the delamination phenomenon. The performance of nano-modified composites using both the nanofibrous mat types, that is, Nylon 66 and NBR-impregnated Nylon 66 membranes, is investigated. Mode I loading tests show a significant improvement of the interlaminar fracture toughness of rubber-modified CFRPs, especially in the G(I,)(R) (up to +151%). The improvement in the G(I,)(C) is less pronounced, but still significant (up to +80%). The achieved results are very encouraging and pave the way to the use of such Nylon-NBR hybrid mats for hindering delamination.
Ortolani, J; Maccaferri, E; Mazzocchetti, L; Benelli, T; Brugo, TM; Zucchelli, A; Giorgini, L
File in questo prodotto:
File Dimensione Formato  
Ortolani MacromSymp.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 626.75 kB
Formato Adobe PDF
626.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/900794
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact