Delamination is the main responsible for structural failure of composites having a laminar structure. In the present work, polyamide (Nylon 66) nanofibers, even impregnated with uncrosslinked nitrile butadiene rubber (NBR), are interleaved into epoxy-based carbon fiber reinforced polymer (CFRP) laminates with the aim to counteract the delamination phenomenon. The performance of nano-modified composites using both the nanofibrous mat types, that is, Nylon 66 and NBR-impregnated Nylon 66 membranes, is investigated. Mode I loading tests show a significant improvement of the interlaminar fracture toughness of rubber-modified CFRPs, especially in the G(I,)(R) (up to +151%). The improvement in the G(I,)(C) is less pronounced, but still significant (up to +80%). The achieved results are very encouraging and pave the way to the use of such Nylon-NBR hybrid mats for hindering delamination.
Polyamide Nanofibers Impregnated with Nitrile Rubber for Enhancing CFRP Delamination Resistance
Ortolani, J;Maccaferri, E;Mazzocchetti, L
;Benelli, T;Brugo, TM;Zucchelli, A;Giorgini, L
2022
Abstract
Delamination is the main responsible for structural failure of composites having a laminar structure. In the present work, polyamide (Nylon 66) nanofibers, even impregnated with uncrosslinked nitrile butadiene rubber (NBR), are interleaved into epoxy-based carbon fiber reinforced polymer (CFRP) laminates with the aim to counteract the delamination phenomenon. The performance of nano-modified composites using both the nanofibrous mat types, that is, Nylon 66 and NBR-impregnated Nylon 66 membranes, is investigated. Mode I loading tests show a significant improvement of the interlaminar fracture toughness of rubber-modified CFRPs, especially in the G(I,)(R) (up to +151%). The improvement in the G(I,)(C) is less pronounced, but still significant (up to +80%). The achieved results are very encouraging and pave the way to the use of such Nylon-NBR hybrid mats for hindering delamination.File | Dimensione | Formato | |
---|---|---|---|
Ortolani MacromSymp.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione
626.75 kB
Formato
Adobe PDF
|
626.75 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.