Observational epidemiological studies analyzed via spatial regression methods are often affected by spatial confounding. We formulate an adjustment strategy based on spectral methods, by considering eigendecomposed conditional autoregressive models. We model exposure and confounding variable using different commonly used spatial models, to study the extent to which bias due to spatial confounding can be adjusted under different specifications.

Ventrucci, M., Page, G.L. (2022). Adjusting for spatial confounding using eigendecomposed CAR models. Nicola Torelli, Ruggero Bellio, Vito Muggeo.

Adjusting for spatial confounding using eigendecomposed CAR models

Ventrucci, Massimo
Primo
;
2022

Abstract

Observational epidemiological studies analyzed via spatial regression methods are often affected by spatial confounding. We formulate an adjustment strategy based on spectral methods, by considering eigendecomposed conditional autoregressive models. We model exposure and confounding variable using different commonly used spatial models, to study the extent to which bias due to spatial confounding can be adjusted under different specifications.
2022
Proceedings of the 36th International Workshop on Statistical Modelling
343
347
Ventrucci, M., Page, G.L. (2022). Adjusting for spatial confounding using eigendecomposed CAR models. Nicola Torelli, Ruggero Bellio, Vito Muggeo.
Ventrucci, Massimo; Page, Garritt L
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/900760
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact