Bayesian disease mapping, yet if undeniably useful to describe variation in risk over time and space, comes with the hurdle of prior elicitation on hard-to-interpret random effect precision parameters. We introduce a reparametrized version of the popular spatio-temporal interaction models, based on Kronecker product intrinsic Gaussian Markov random fields, that we name the variance partitioning model. The variance partitioning model includes a mixing parameter that balances the contribution of the main and interaction effects to the total (generalized) variance and enhances interpretability. The use of a penalized complexity prior on the mixing parameter aids in coding prior information in an intuitive way. We illustrate the advantages of the variance partitioning model using two case studies.
Franco Villoria, M., Ventrucci, M., Rue, H. (2022). Variance partitioning in spatio-temporal disease mapping models. STATISTICAL METHODS IN MEDICAL RESEARCH, 31(8 (August)), 1566-1578 [10.1177/09622802221099642].
Variance partitioning in spatio-temporal disease mapping models
Ventrucci, Massimo;
2022
Abstract
Bayesian disease mapping, yet if undeniably useful to describe variation in risk over time and space, comes with the hurdle of prior elicitation on hard-to-interpret random effect precision parameters. We introduce a reparametrized version of the popular spatio-temporal interaction models, based on Kronecker product intrinsic Gaussian Markov random fields, that we name the variance partitioning model. The variance partitioning model includes a mixing parameter that balances the contribution of the main and interaction effects to the total (generalized) variance and enhances interpretability. The use of a penalized complexity prior on the mixing parameter aids in coding prior information in an intuitive way. We illustrate the advantages of the variance partitioning model using two case studies.File | Dimensione | Formato | |
---|---|---|---|
11585_900743.pdf
accesso aperto
Descrizione: AAM
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
617.48 kB
Formato
Adobe PDF
|
617.48 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.