Using representation-theoretic methods, we study the spectrum (in the tempered distributions) of the formally self-adjoint 2 × 2 system Q(x, Dx) = A ( - ∂x2/2 + x2/2) + B (x∂x + 1/2), x ∈ ℝ, with A, B ∈ Mat2(ℝ) constant matrices such that A = tA > 0 (or < 0) and B = -tB ≠ 0, in terms of invariants of the matrices A and B. In fact, if the Hermitian matrix A + iB is positive (or negative) definite, we determine the structure of the spectrum of the associated system Q(x,Dx) through suitable vector-valued Hermite functions. In the final sections we indicate how to generalize the results to analogous N × N systems and to particular multivariable cases.

Parmeggiani, A., Wakayama, M. (2002). Non-commutative harmonic oscillators-I. FORUM MATHEMATICUM, 14(4), 539-604 [10.1515/form.2002.025].

Non-commutative harmonic oscillators-I

Parmeggiani A.;
2002

Abstract

Using representation-theoretic methods, we study the spectrum (in the tempered distributions) of the formally self-adjoint 2 × 2 system Q(x, Dx) = A ( - ∂x2/2 + x2/2) + B (x∂x + 1/2), x ∈ ℝ, with A, B ∈ Mat2(ℝ) constant matrices such that A = tA > 0 (or < 0) and B = -tB ≠ 0, in terms of invariants of the matrices A and B. In fact, if the Hermitian matrix A + iB is positive (or negative) definite, we determine the structure of the spectrum of the associated system Q(x,Dx) through suitable vector-valued Hermite functions. In the final sections we indicate how to generalize the results to analogous N × N systems and to particular multivariable cases.
2002
Parmeggiani, A., Wakayama, M. (2002). Non-commutative harmonic oscillators-I. FORUM MATHEMATICUM, 14(4), 539-604 [10.1515/form.2002.025].
Parmeggiani, A.; Wakayama, M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/900499
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 33
social impact