We refine our study of the spectrum of non-commutative harmonic oscillators Q(x, Dx) = 1/2A(-∂x2 + x2) + B(x∂x + 1/2), x ∈ ℝ, where A, B ∈ Mat2(ℝ) are constant 2 × 2 matrices such that A = tA > 0 (or <0) and B = -tB ≠ 0, and the Hermitian matrix A + iB > 0 (or <0). We introduce a new family of L2-bases and study the relation between the coefficients of the eigenfunction obtained by means of these bases, and the ones obtained by means of the bases introduced in [4]. We hence completely determine the spectrum and its multiplicity.

Parmeggiani A., Wakayama M. (2002). Non-commutative harmonic oscillators-II. FORUM MATHEMATICUM, 14(5), 669-690 [10.1515/form.2002.029].

Non-commutative harmonic oscillators-II

Parmeggiani A.;
2002

Abstract

We refine our study of the spectrum of non-commutative harmonic oscillators Q(x, Dx) = 1/2A(-∂x2 + x2) + B(x∂x + 1/2), x ∈ ℝ, where A, B ∈ Mat2(ℝ) are constant 2 × 2 matrices such that A = tA > 0 (or <0) and B = -tB ≠ 0, and the Hermitian matrix A + iB > 0 (or <0). We introduce a new family of L2-bases and study the relation between the coefficients of the eigenfunction obtained by means of these bases, and the ones obtained by means of the bases introduced in [4]. We hence completely determine the spectrum and its multiplicity.
2002
Parmeggiani A., Wakayama M. (2002). Non-commutative harmonic oscillators-II. FORUM MATHEMATICUM, 14(5), 669-690 [10.1515/form.2002.029].
Parmeggiani A.; Wakayama M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/900490
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 28
social impact