Systems of integral equations are proposed which generalise those previously encountered in connection with the so-called staircase models. Under the assumption that these equations describe the finite-size effects of relatistic field theories via the thermodynamic Bethe ansatz, analytical and numerical evidence is given for the existence of a variety of new roaming renormalisation group trajectories. For each positive integer k and s = 0,...,k - 1, there is a one-parameter family of trajectories, passing close by the coset conformal field theories G(k) × G(nk+s)/G((n+1)(k+s) before finally flowing to a massive theory for s = 0, or to another coset model for s ≠ 0. © 1993.

Dorey P., Ravanini F. (1993). Generalising the staircase models. NUCLEAR PHYSICS. B, 406(3), 708-726 [10.1016/0550-3213(93)90007-C].

Generalising the staircase models

Ravanini F.
1993

Abstract

Systems of integral equations are proposed which generalise those previously encountered in connection with the so-called staircase models. Under the assumption that these equations describe the finite-size effects of relatistic field theories via the thermodynamic Bethe ansatz, analytical and numerical evidence is given for the existence of a variety of new roaming renormalisation group trajectories. For each positive integer k and s = 0,...,k - 1, there is a one-parameter family of trajectories, passing close by the coset conformal field theories G(k) × G(nk+s)/G((n+1)(k+s) before finally flowing to a massive theory for s = 0, or to another coset model for s ≠ 0. © 1993.
1993
Dorey P., Ravanini F. (1993). Generalising the staircase models. NUCLEAR PHYSICS. B, 406(3), 708-726 [10.1016/0550-3213(93)90007-C].
Dorey P.; Ravanini F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/900313
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 28
social impact