CUORE Upgrade with Particle IDentification (CUPID) is a foreseen ton-scale array of Li2MoO4 (LMO) cryogenic calorimeters with double readout of heat and light signals. Its scientific goal is to fully explore the inverted hierarchy of neutrino masses in the search for neutrinoless double beta decay of Mo-100. Pile-up of standard double beta decay of the candidate isotope is a relevant background. We generate pile-up heat events via injection of Joule heater pulses with a programmable waveform generator in a small array of LMO crystals operated underground in the Laboratori Nazionali del Gran Sasso, Italy. This allows to label pile-up pulses and control both time difference and underlying amplitudes of individual heat pulses in the data. We present the performance of supervised learning classifiers on data and the attained pile-up rejection efficiency.

Fantini, G., Armatol, A., Armengaud, E., Armstrong, W., Augier, C., Avignone, F.T., et al. (2022). Machine Learning Techniques for Pile-Up Rejection in Cryogenic Calorimeters. JOURNAL OF LOW TEMPERATURE PHYSICS, 209, 1024-1031 [10.1007/s10909-022-02741-9].

Machine Learning Techniques for Pile-Up Rejection in Cryogenic Calorimeters

Zucchelli, S
2022

Abstract

CUORE Upgrade with Particle IDentification (CUPID) is a foreseen ton-scale array of Li2MoO4 (LMO) cryogenic calorimeters with double readout of heat and light signals. Its scientific goal is to fully explore the inverted hierarchy of neutrino masses in the search for neutrinoless double beta decay of Mo-100. Pile-up of standard double beta decay of the candidate isotope is a relevant background. We generate pile-up heat events via injection of Joule heater pulses with a programmable waveform generator in a small array of LMO crystals operated underground in the Laboratori Nazionali del Gran Sasso, Italy. This allows to label pile-up pulses and control both time difference and underlying amplitudes of individual heat pulses in the data. We present the performance of supervised learning classifiers on data and the attained pile-up rejection efficiency.
2022
Fantini, G., Armatol, A., Armengaud, E., Armstrong, W., Augier, C., Avignone, F.T., et al. (2022). Machine Learning Techniques for Pile-Up Rejection in Cryogenic Calorimeters. JOURNAL OF LOW TEMPERATURE PHYSICS, 209, 1024-1031 [10.1007/s10909-022-02741-9].
Fantini, G; Armatol, A; Armengaud, E; Armstrong, W; Augier, C; Avignone, FT; Azzolini, O; Barabash, A; Bari, G; Barresi, A; Baudin, D; Bellini, F; Ben...espandi
File in questo prodotto:
File Dimensione Formato  
s10909-022-02741-9.pdf

accesso aperto

Descrizione: Articolo su rivista internazionale con referees
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/899790
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact