Finite Element Method (FEM) has deservedly gained the reputation of the most powerful numerical method in the field of structural analysis. It offers tools to perform various kinds of simulations in this field, ranging from static linear to nonlinear dynamic analyses. In recent years, a particular challenge is development of FE formulations that enable highly efficient simulations, aiming at real-time dynamic simulations as a final objective while keeping high simulation fidelity such as nonlinear effects. The authors of this paper propose a simplified corotational FE formulation as a possible solution to this challenge. The basic idea is to keep the linear behavior of each element in the FE assemblage, but to extract the rigid-body motion on the element level and include it in the formulation to cover geometric nonlinearities. This paper elaborates the idea and demonstrates it on static cases with three different finite element types. The objective is to check the achievable accuracy based on such a simplified geometrically nonlinear FE formulation. In the considered examples, the difference between the results obtained with the present formulation and those by rigorous formulations is less than 3% although fairly large deformations are induced.
Marinkovic D., Zehn M., Pavlovic A (2020). Highly efficient fe simulations by means of simplified corotational formulation. OPERATIONAL RESEARCH IN ENGINEERING SCIENCES: THEORY AND APPLICATIONS, 3(2), 74-86 [10.31181/oresta2003074m].
Highly efficient fe simulations by means of simplified corotational formulation
Marinkovic D.
;Pavlovic A
2020
Abstract
Finite Element Method (FEM) has deservedly gained the reputation of the most powerful numerical method in the field of structural analysis. It offers tools to perform various kinds of simulations in this field, ranging from static linear to nonlinear dynamic analyses. In recent years, a particular challenge is development of FE formulations that enable highly efficient simulations, aiming at real-time dynamic simulations as a final objective while keeping high simulation fidelity such as nonlinear effects. The authors of this paper propose a simplified corotational FE formulation as a possible solution to this challenge. The basic idea is to keep the linear behavior of each element in the FE assemblage, but to extract the rigid-body motion on the element level and include it in the formulation to cover geometric nonlinearities. This paper elaborates the idea and demonstrates it on static cases with three different finite element types. The objective is to check the achievable accuracy based on such a simplified geometrically nonlinear FE formulation. In the considered examples, the difference between the results obtained with the present formulation and those by rigorous formulations is less than 3% although fairly large deformations are induced.File | Dimensione | Formato | |
---|---|---|---|
editor,+highly+efficient+FE+simulations+by+means+of+simplified+corotational+formulation.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
557.34 kB
Formato
Adobe PDF
|
557.34 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.