A finite subgroup G of GL(n,C) is involutory if the sum of the dimensions of its irreducible complex representations is given by the number of absolute involutions in the group, i.e. elements g in G such that $g bar g=1$, where the bar denotes complex conjugation. A uniform combinatorial model is constructed for all non-exceptional irreducible complex reflection groups which are involutory including, in particular, all infinite families of finite irreducible Coxeter groups.

F. Caselli (2010). Involutory reflection groups and their models. JOURNAL OF ALGEBRA, 324, 370-393 [10.1016/j.jalgebra.2010.04.017].

Involutory reflection groups and their models

CASELLI, FABRIZIO
2010

Abstract

A finite subgroup G of GL(n,C) is involutory if the sum of the dimensions of its irreducible complex representations is given by the number of absolute involutions in the group, i.e. elements g in G such that $g bar g=1$, where the bar denotes complex conjugation. A uniform combinatorial model is constructed for all non-exceptional irreducible complex reflection groups which are involutory including, in particular, all infinite families of finite irreducible Coxeter groups.
2010
F. Caselli (2010). Involutory reflection groups and their models. JOURNAL OF ALGEBRA, 324, 370-393 [10.1016/j.jalgebra.2010.04.017].
F. Caselli
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/89973
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact