Werealized the synthesis of a novel nanogranular system consisting of magnetite nanoparticles embedded in biomimetic carbonate hydroxyapatite (HA), for prospective uses in bone tissue engineering. An original two-step method was implemented: in the first step, magnetite nanoparticles are prepared by refluxing an aqueous solution of Fe(SO4) and Fe2(SO4)3 in an excess of tetrabutilammonium hydroxide acting as surfactant; then, the magnetite nanoparticles are coated with a Ca(OH)2 layer, to induce the growth of HA directly on their surface, by reaction of Ca(OH)2 with HPO42-. Two nanogranular samples were collected with magnetite content∼0.8 and∼4 wt%. The magnetite nanoparticles and the composite material were investigated by x-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. These analyses provided information on the structure of the nanoparticles (mean size∼6 nm) and revealed the presence of surface hydroxyl groups, which promoted the subsequent growth of the HA phase, featuring a nanocrystalline lamellar structure. The magnetic study, by a superconducting quantum interference device magnetometer, has shown that both the as-prepared and the HA-coated magnetite nanoparticles are superparamagnetic at T = 300 K, but the magnetization relaxation process is dominated by dipolar magnetic interactions of comparable strength. In the three samples, a collective frozen magnetic regime is established below T ∼ 20 K. These results indicate that the magnetite nanoparticles tend to form agglomerates in the as-prepared state, which are not substantially altered by the HA growth, coherently with the creation of electrostatic hydrogen bonds among the surface hydroxyl groups.
Del Bianco L., Lesci I.G., Fracasso G., Barucca G., Spizzo F., Tamisari M., et al. (2015). Synthesis of nanogranular Fe3O4/biomimetic hydroxyapatite for potential applications in nanomedicine: Structural and magnetic characterization. MATERIALS RESEARCH EXPRESS, 2(6), 065002-065016 [10.1088/2053-1591/2/6/065002].
Synthesis of nanogranular Fe3O4/biomimetic hydroxyapatite for potential applications in nanomedicine: Structural and magnetic characterization
Del Bianco L.;Lesci I. G.;Fracasso G.;Barucca G.;Scotti R.;Ciocca L.
2015
Abstract
Werealized the synthesis of a novel nanogranular system consisting of magnetite nanoparticles embedded in biomimetic carbonate hydroxyapatite (HA), for prospective uses in bone tissue engineering. An original two-step method was implemented: in the first step, magnetite nanoparticles are prepared by refluxing an aqueous solution of Fe(SO4) and Fe2(SO4)3 in an excess of tetrabutilammonium hydroxide acting as surfactant; then, the magnetite nanoparticles are coated with a Ca(OH)2 layer, to induce the growth of HA directly on their surface, by reaction of Ca(OH)2 with HPO42-. Two nanogranular samples were collected with magnetite content∼0.8 and∼4 wt%. The magnetite nanoparticles and the composite material were investigated by x-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. These analyses provided information on the structure of the nanoparticles (mean size∼6 nm) and revealed the presence of surface hydroxyl groups, which promoted the subsequent growth of the HA phase, featuring a nanocrystalline lamellar structure. The magnetic study, by a superconducting quantum interference device magnetometer, has shown that both the as-prepared and the HA-coated magnetite nanoparticles are superparamagnetic at T = 300 K, but the magnetization relaxation process is dominated by dipolar magnetic interactions of comparable strength. In the three samples, a collective frozen magnetic regime is established below T ∼ 20 K. These results indicate that the magnetite nanoparticles tend to form agglomerates in the as-prepared state, which are not substantially altered by the HA growth, coherently with the creation of electrostatic hydrogen bonds among the surface hydroxyl groups.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.