Fibre-reinforced composite materials are widespread in lightweight, high-performance applications. However, polymeric composites generally exhibit a brittle behaviour, which makes them susceptible to impact damage. Even low-velocity impacts can produce delaminations, which cause a substantial reduction of the compressive mechanical properties. Metallic layers have been embedded in composite laminates with the aim to improve their fracture behaviour: aluminium plies can be employed to increase the indentation resistance of Carbon Fibre Reinforced Polymers (CFRP) specimens. For this reason, hybrid fibre-metal laminates are expected to be a viable solution to reduce the damage caused by low-velocity impacts. In this work, CFRP specimens reinforced with aluminium plies were modelled using the finite element method and a cohesive zone model. Cohesive elements based on a traction-separation formulation were embedded at each ply-to-ply interface to enforce delamination damage. Different configurations of the Al reinforcements were studied by varying the position of the aluminium layers between the CFRP plies.
Numerical Investigation of Al-Reinforced CFRP Composite under Low-Velocity Impact
Falaschetti M. P.
;Zavatta N.;Rondina F.;Donati L.;Troiani E.
2022
Abstract
Fibre-reinforced composite materials are widespread in lightweight, high-performance applications. However, polymeric composites generally exhibit a brittle behaviour, which makes them susceptible to impact damage. Even low-velocity impacts can produce delaminations, which cause a substantial reduction of the compressive mechanical properties. Metallic layers have been embedded in composite laminates with the aim to improve their fracture behaviour: aluminium plies can be employed to increase the indentation resistance of Carbon Fibre Reinforced Polymers (CFRP) specimens. For this reason, hybrid fibre-metal laminates are expected to be a viable solution to reduce the damage caused by low-velocity impacts. In this work, CFRP specimens reinforced with aluminium plies were modelled using the finite element method and a cohesive zone model. Cohesive elements based on a traction-separation formulation were embedded at each ply-to-ply interface to enforce delamination damage. Different configurations of the Al reinforcements were studied by varying the position of the aluminium layers between the CFRP plies.File | Dimensione | Formato | |
---|---|---|---|
2022-ESAFORM-Numerical investigation of Al-reinforced CFRP composite under low-velocity impact.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.46 MB
Formato
Adobe PDF
|
2.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.