Symbolic knowledge-extraction (SKE) algorithms proposed by the XAI community to obtain human-intelligible explanations for opaque machine learning predictors are currently being studied and developed with growing interest, also in order to achieve believability in interactions. However, choosing the most adequate extraction procedure amongst the many existing in the literature is becoming more and more challenging, as the amount of available methods increases. In fact, most of the proposed algorithms come with constraints over their applicability. In this paper we focus upon a quite general class of SKE techniques, namely hypercube-based methods. Despite being commonly considered regression-specific, we discuss why hypercube-based SKE methods are flexible enough to deal with classification problems as well. More generally, we propose a common generalised model for hypercube-based methods, and we show how they can be exploited to perform SKE on datasets, predictors, or learning tasks of any sort. We also report as a concrete example the implementation of the proposed generalisation in the PSyKE framework.
Federico Sabbatini, G.C. (2022). Hypercube-Based Methods for Symbolic Knowledge Extraction: Towards a Unified Model. Aachen : Sun SITE Central Europe, RWTH Aachen University.
Hypercube-Based Methods for Symbolic Knowledge Extraction: Towards a Unified Model
Giovanni Ciatto;Roberta Calegari;Andrea Omicini
2022
Abstract
Symbolic knowledge-extraction (SKE) algorithms proposed by the XAI community to obtain human-intelligible explanations for opaque machine learning predictors are currently being studied and developed with growing interest, also in order to achieve believability in interactions. However, choosing the most adequate extraction procedure amongst the many existing in the literature is becoming more and more challenging, as the amount of available methods increases. In fact, most of the proposed algorithms come with constraints over their applicability. In this paper we focus upon a quite general class of SKE techniques, namely hypercube-based methods. Despite being commonly considered regression-specific, we discuss why hypercube-based SKE methods are flexible enough to deal with classification problems as well. More generally, we propose a common generalised model for hypercube-based methods, and we show how they can be exploited to perform SKE on datasets, predictors, or learning tasks of any sort. We also report as a concrete example the implementation of the proposed generalisation in the PSyKE framework.File | Dimensione | Formato | |
---|---|---|---|
paper4.pdf
accesso aperto
Descrizione: versione finale
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.