The objective was to evaluate the effect of different root canal irrigating solutions on the activity of matrix metalloproteinases (MMPs), and correlation to the push-out bond strength (PBS) and nanoleakage expression (NL) in the root dentin. Seventy-two single-rooted teeth were treated endodontically and distributed into four groups (n = 6 for in-situ zymography, n = 10 for PBS, and n = 2 for NL per group) according to the irrigating solutions used: (I) saline (S); (II) 5.25% sodium hypochlorite (SH); (III) 5.25% SH + 10% citric acid (CA); and (IV) 5.25% SH + 10% CA + 0.2% chlorhexidine (CHX). After root canal obturation, post space was prepared to receive the glass fiber post. Dual-cure resin was used for luting and light polymerization was performed. The root/fiber post assemblies were sectioned and subjected to in situ zymography, and PBS and NL expression analysis tests. The enzymatic activity was quantified and expressed as a percentage of the green fluorescence, while fractographic evaluation was performed after PBS with a stereomicroscope, and data were statistically analyzed at p < 0.05. The zymography analysis shows high expression of MMPs in the middle third of the root in all groups, while the most abundant activity of MMPs following the irrigating solutions is observed in groups I and III, where saline and citric acid are used, respectively. Inversely, group IV, where chlorhexidine is the final rinse, records the lowest MMP activity with the highest PBS, and the statistical analysis of the groups are ranked as: IV > II > III > I (p < 0.05). The combination of SH, CA, and CHX results in lower expression of MMPs and higher push-out bond strength of fiber posts to root dentin, with no difference seen in the nanoleakage expression (p > 0.05); hence, this irrigation regime with chlorhexidine as a final rinse is more favorable than other combinations in ensuring optimal adhesion to root dentine.

In Situ Zymography Analysis of Matrix Metalloproteinases Activity Following Endodontic Irrigation Protocols and Correlation to Root Dentine Bond Strength

Mazzitelli, Claudia;Maravic, Tatjana;Mazzoni, Annalisa;
2022

Abstract

The objective was to evaluate the effect of different root canal irrigating solutions on the activity of matrix metalloproteinases (MMPs), and correlation to the push-out bond strength (PBS) and nanoleakage expression (NL) in the root dentin. Seventy-two single-rooted teeth were treated endodontically and distributed into four groups (n = 6 for in-situ zymography, n = 10 for PBS, and n = 2 for NL per group) according to the irrigating solutions used: (I) saline (S); (II) 5.25% sodium hypochlorite (SH); (III) 5.25% SH + 10% citric acid (CA); and (IV) 5.25% SH + 10% CA + 0.2% chlorhexidine (CHX). After root canal obturation, post space was prepared to receive the glass fiber post. Dual-cure resin was used for luting and light polymerization was performed. The root/fiber post assemblies were sectioned and subjected to in situ zymography, and PBS and NL expression analysis tests. The enzymatic activity was quantified and expressed as a percentage of the green fluorescence, while fractographic evaluation was performed after PBS with a stereomicroscope, and data were statistically analyzed at p < 0.05. The zymography analysis shows high expression of MMPs in the middle third of the root in all groups, while the most abundant activity of MMPs following the irrigating solutions is observed in groups I and III, where saline and citric acid are used, respectively. Inversely, group IV, where chlorhexidine is the final rinse, records the lowest MMP activity with the highest PBS, and the statistical analysis of the groups are ranked as: IV > II > III > I (p < 0.05). The combination of SH, CA, and CHX results in lower expression of MMPs and higher push-out bond strength of fiber posts to root dentin, with no difference seen in the nanoleakage expression (p > 0.05); hence, this irrigation regime with chlorhexidine as a final rinse is more favorable than other combinations in ensuring optimal adhesion to root dentine.
Baruwa, Abayomi Omokeji; Mazzitelli, Claudia; Maravic, Tatjana; Martins, Jorge N R; Mazzoni, Annalisa; Ginjeira, António
File in questo prodotto:
File Dimensione Formato  
Baruwa_polymers-2022.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 5.57 MB
Formato Adobe PDF
5.57 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/899331
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 2
social impact