Funapide is a 3,3’-spirocyclic oxindole with promising analgesic activity. A reported pilot-plant scale synthesis of this chiral compound involves an asymmetric aldol reaction, catalyzed by a common bifunctional thiourea structure. In this work, we show that the swapping of the thiourea unit of the catalyst for a tailored squaramide group provides an equally active, but rewardingly more selective, catalyst for this aldol reaction (from 70.5 to 85 % ee). The reaction was studied first on a model oxindole compound. Then, the set of optimal conditions was applied to the target funapide intermediate. The applicability of these conditions seems limited to oxindoles bearing the 3-substituent of funapide. Exemplifying the characteristics of target-focused methodological development, this study highlights how a wide-range screening of catalysts and reaction conditions can provide non-negligible improvements in an industrially viable asymmetric transformation.
Investigation of Squaramide Catalysts in the Aldol Reaction En Route to Funapide
Vicenzi A.;Bisag G. D.;Fochi M.;Bernardi L.
2022
Abstract
Funapide is a 3,3’-spirocyclic oxindole with promising analgesic activity. A reported pilot-plant scale synthesis of this chiral compound involves an asymmetric aldol reaction, catalyzed by a common bifunctional thiourea structure. In this work, we show that the swapping of the thiourea unit of the catalyst for a tailored squaramide group provides an equally active, but rewardingly more selective, catalyst for this aldol reaction (from 70.5 to 85 % ee). The reaction was studied first on a model oxindole compound. Then, the set of optimal conditions was applied to the target funapide intermediate. The applicability of these conditions seems limited to oxindoles bearing the 3-substituent of funapide. Exemplifying the characteristics of target-focused methodological development, this study highlights how a wide-range screening of catalysts and reaction conditions can provide non-negligible improvements in an industrially viable asymmetric transformation.File | Dimensione | Formato | |
---|---|---|---|
Eur J Org Chem - 2021 - Sonsona et al..pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
3.03 MB
Formato
Adobe PDF
|
3.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.