We provide a Hopf boundary lemma for the regional fractional Laplacian (-Delta)(Omega)(s), with Omega subset of R-N a bounded open set. More precisely, given u a pointwise or weak super-solution of the equation (-Delta)(Omega)(s)u = c(x)u in Omega, we show that the ratio u(x)/(dist(x, partial derivative Omega))(2s-1) is strictly positive as x approaches the boundary partial derivative Omega of Omega. We also prove a strong maximum principle for distributional super-solutions.

Abatangelo N., Fall M.M., Temgoua R.Y. (2023). A Hopf lemma for the regional fractional Laplacian. ANNALI DI MATEMATICA PURA ED APPLICATA, 202(1), 95-113 [10.1007/s10231-022-01234-6].

A Hopf lemma for the regional fractional Laplacian

Abatangelo N.;
2023

Abstract

We provide a Hopf boundary lemma for the regional fractional Laplacian (-Delta)(Omega)(s), with Omega subset of R-N a bounded open set. More precisely, given u a pointwise or weak super-solution of the equation (-Delta)(Omega)(s)u = c(x)u in Omega, we show that the ratio u(x)/(dist(x, partial derivative Omega))(2s-1) is strictly positive as x approaches the boundary partial derivative Omega of Omega. We also prove a strong maximum principle for distributional super-solutions.
2023
Abatangelo N., Fall M.M., Temgoua R.Y. (2023). A Hopf lemma for the regional fractional Laplacian. ANNALI DI MATEMATICA PURA ED APPLICATA, 202(1), 95-113 [10.1007/s10231-022-01234-6].
Abatangelo N.; Fall M.M.; Temgoua R.Y.
File in questo prodotto:
File Dimensione Formato  
s10231-022-01234-6.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/899084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact