Convective mixing in helium-core-burning (HeCB) stars is one of the outstanding issues in stellar modelling. The precise asteroseismic measurements of gravity-mode period spacing (&dela;σ1) have opened the door to detailed studies of the near-core structure of such stars, which had not been possible before. Here, we provide stringent tests of various core-mixing scenarios against the largely unbiased population of red-clump stars belonging to the old-open clusters monitored by Kepler, and by coupling the updated precise inference on &dela;σ1 in thousands of field stars with spectroscopic constraints. We find that models with moderate overshooting successfully reproduce the range observed of &dela;σ1 in clusters. In particular, we show that there is no evidence for the need to extend the size of the adiabatically stratified core, at least at the beginning of the HeCB phase. This conclusion is based primarily on ensemble studies of &dela;σ1 as a function of mass and metallicity. While &dela;σ1 shows no appreciable dependence on the mass, we have found a clear dependence of &dela;σ1 on metallicity, which is also supported by predictions from models.

Bossini D., Miglio A., Salaris M., Vrard M., Cassisi S., Mosser B., et al. (2017). Kepler red-clump stars in the field and in open clusters: Constraints on core mixing. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 469(4), 4718-4725 [10.1093/mnras/stx1135].

Kepler red-clump stars in the field and in open clusters: Constraints on core mixing

Miglio A.;
2017

Abstract

Convective mixing in helium-core-burning (HeCB) stars is one of the outstanding issues in stellar modelling. The precise asteroseismic measurements of gravity-mode period spacing (&dela;σ1) have opened the door to detailed studies of the near-core structure of such stars, which had not been possible before. Here, we provide stringent tests of various core-mixing scenarios against the largely unbiased population of red-clump stars belonging to the old-open clusters monitored by Kepler, and by coupling the updated precise inference on &dela;σ1 in thousands of field stars with spectroscopic constraints. We find that models with moderate overshooting successfully reproduce the range observed of &dela;σ1 in clusters. In particular, we show that there is no evidence for the need to extend the size of the adiabatically stratified core, at least at the beginning of the HeCB phase. This conclusion is based primarily on ensemble studies of &dela;σ1 as a function of mass and metallicity. While &dela;σ1 shows no appreciable dependence on the mass, we have found a clear dependence of &dela;σ1 on metallicity, which is also supported by predictions from models.
2017
Bossini D., Miglio A., Salaris M., Vrard M., Cassisi S., Mosser B., et al. (2017). Kepler red-clump stars in the field and in open clusters: Constraints on core mixing. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 469(4), 4718-4725 [10.1093/mnras/stx1135].
Bossini D.; Miglio A.; Salaris M.; Vrard M.; Cassisi S.; Mosser B.; Montalban J.; Girardi L.; Noels A.; Bressan A.; Pietrinferni A.; Tayar J.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/898996
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 35
social impact