The multiscale analysis of lineament patterns helps define the geometric scaling laws and the relationships between outcrop- and regional-scale structures in a fracture network. Here, we present a novel analytical and statistical workflow to analyze the geometrical and spatial organization properties of the Rolvsnes granodiorite lineament (fracture) network in the crystalline basement of southwestern Norway (Bomlo Island). The network shows a scale-invariant spatial distribution described by a fractal dimension D approximate to 1.51, with lineament lengths distributed following a general scaling power law (exponent alpha = 1.88). However, orientation-dependent analyses show that the identified sets vary their relative abundance and spatial organization and occupancy with scale, defining a hierarchical network. Lineament length, density, and intensity distributions of each set follow power-law scaling laws characterized by their own exponents. Thus, our multiscale, orientation-dependent statistical approach can aid in the identification of the hierarchical structure of the fracture network, quantifying the spatial heterogeneity of lineament sets and their related regional-vs. local-scale relevance. These results, integrated with field petrophysical analyses of fracture lineaments, can effectively improve the detail and accuracy of permeability prediction of heterogeneously fractured media. Our results also show how the geological and geometrical properties of the fracture network and analytical biases affect the results of multiscale analyses and how they must be critically assessed before extrapolating the conclusions to any other similar case study of fractured crystalline basement blocks.

Multiscale lineament analysis and permeability heterogeneity of fractured crystalline basement blocks / Alberto Ceccato; Giulia Tartaglia; Marco Antonellini; Giulio Viola. - In: SOLID EARTH. - ISSN 1869-9510. - STAMPA. - 13:9(2022), pp. 1431-1453. [10.5194/se-13-1431-2022]

Multiscale lineament analysis and permeability heterogeneity of fractured crystalline basement blocks

Alberto Ceccato;Giulia Tartaglia;Marco Antonellini;Giulio Viola
2022

Abstract

The multiscale analysis of lineament patterns helps define the geometric scaling laws and the relationships between outcrop- and regional-scale structures in a fracture network. Here, we present a novel analytical and statistical workflow to analyze the geometrical and spatial organization properties of the Rolvsnes granodiorite lineament (fracture) network in the crystalline basement of southwestern Norway (Bomlo Island). The network shows a scale-invariant spatial distribution described by a fractal dimension D approximate to 1.51, with lineament lengths distributed following a general scaling power law (exponent alpha = 1.88). However, orientation-dependent analyses show that the identified sets vary their relative abundance and spatial organization and occupancy with scale, defining a hierarchical network. Lineament length, density, and intensity distributions of each set follow power-law scaling laws characterized by their own exponents. Thus, our multiscale, orientation-dependent statistical approach can aid in the identification of the hierarchical structure of the fracture network, quantifying the spatial heterogeneity of lineament sets and their related regional-vs. local-scale relevance. These results, integrated with field petrophysical analyses of fracture lineaments, can effectively improve the detail and accuracy of permeability prediction of heterogeneously fractured media. Our results also show how the geological and geometrical properties of the fracture network and analytical biases affect the results of multiscale analyses and how they must be critically assessed before extrapolating the conclusions to any other similar case study of fractured crystalline basement blocks.
2022
Multiscale lineament analysis and permeability heterogeneity of fractured crystalline basement blocks / Alberto Ceccato; Giulia Tartaglia; Marco Antonellini; Giulio Viola. - In: SOLID EARTH. - ISSN 1869-9510. - STAMPA. - 13:9(2022), pp. 1431-1453. [10.5194/se-13-1431-2022]
Alberto Ceccato; Giulia Tartaglia; Marco Antonellini; Giulio Viola
File in questo prodotto:
File Dimensione Formato  
Ceccato et al._2022.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 9.13 MB
Formato Adobe PDF
9.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/898933
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact