Background: Experimental and epidemiological studies indicate an association between exposure to particulate matter (PM) air pollution and increased risk of type 2 diabetes. In view of the high and increasing prevalence of diabetes, we aimed to quantify the burden of type 2 diabetes attributable to PM2·5 originating from ambient and household air pollution. Methods: We systematically compiled all relevant cohort and case-control studies assessing the effect of exposure to household and ambient fine particulate matter (PM2·5) air pollution on type 2 diabetes incidence and mortality. We derived an exposure–response curve from the extracted relative risk estimates using the MR-BRT (meta-regression—Bayesian, regularised, trimmed) tool. The estimated curve was linked to ambient and household PM2·5 exposures from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019, and estimates of the attributable burden (population attributable fractions and rates per 100 000 population of deaths and disability-adjusted life-years) for 204 countries from 1990 to 2019 were calculated. We also assessed the role of changes in exposure, population size, age, and type 2 diabetes incidence in the observed trend in PM2·5-attributable type 2 diabetes burden. All estimates are presented with 95% uncertainty intervals. Findings: In 2019, approximately a fifth of the global burden of type 2 diabetes was attributable to PM2·5 exposure, with an estimated 3·78 (95% uncertainty interval 2·68–4·83) deaths per 100 000 population and 167 (117–223) disability-adjusted life-years (DALYs) per 100 000 population. Approximately 13·4% (9·49–17·5) of deaths and 13·6% (9·73–17·9) of DALYs due to type 2 diabetes were contributed by ambient PM2·5, and 6·50% (4·22–9·53) of deaths and 5·92% (3·81–8·64) of DALYs by household air pollution. High burdens, in terms of numbers as well as rates, were estimated in Asia, sub-Saharan Africa, and South America. Since 1990, the attributable burden has increased by 50%, driven largely by population growth and ageing. Globally, the impact of reductions in household air pollution was largely offset by increased ambient PM2·5. Interpretation: Air pollution is a major risk factor for diabetes. We estimated that about a fifth of the global burden of type 2 diabetes is attributable PM2·5 pollution. Air pollution mitigation therefore might have an essential role in reducing the global disease burden resulting from type 2 diabetes. Funding: Bill & Melinda Gates Foundation.

Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2·5 air pollution, 1990–2019: an analysis of data from the Global Burden of Disease Study 2019 / Burkart K.; Causey K.; Cohen A.J.; Wozniak S.S.; Salvi D.D.; Abbafati C.; Adekanmbi V.; Adsuar J.C.; Ahmadi K.; Alahdab F.; Al-Aly Z.; Alipour V.; Alvis-Guzman N.; Amegah A.K.; Andrei C.L.; Andrei T.; Ansari F.; Arabloo J.; Aremu O.; Aripov T.; Babaee E.; Banach M.; Barnett A.; Barnighausen T.W.; Bedi N.; Behzadifar M.; Bejot Y.; Bennett D.A.; Bensenor I.M.; Bernstein R.S.; Bhattacharyya K.; Bijani A.; Biondi A.; Bohlouli S.; Breitner S.; Brenner H.; Butt Z.A.; Camera L.A.; Cantu-Brito C.; Carvalho F.; Cerin E.; Chattu V.K.; Chauhan B.G.; Choi J.-Y.J.; Chu D.-T.; Dai X.; Dandona L.; Dandona R.; Daryani A.; Davletov K.; de Courten B.; Demeke F.M.; Denova-Gutierrez E.; Dharmaratne S.D.; Dhimal M.; Diaz D.; Djalalinia S.; Duncan B.B.; El Sayed Zaki M.; Eskandarieh S.; Fareed M.; Farzadfar F.; Fattahi N.; Fazlzadeh M.; Fernandes E.; Filip I.; Fischer F.; Foigt N.A.; Freitas M.; Ghashghaee A.; Gill P.S.; Ginawi I.A.; Gopalani S.V.; Guo Y.; Gupta R.D.; Habtewold T.D.; Hamadeh R.R.; Hamidi S.; Hankey G.J.; Hasanpoor E.; Hassen H.Y.; Hay S.I.; Heibati B.; Hole M.K.; Hossain N.; Househ M.; Irvani S.S.N.; Jaafari J.; Jakovljevic M.; Jha R.P.; Jonas J.B.; Jozwiak J.J.; Kasaeian A.; Kaydi N.; Khader Y.S.; Khafaie M.A.; Khan E.A.; Khan J.; Khan M.N.; Khatab K.; Khater A.M.; Kim Y.J.; Kimokoti R.W.; Kisa A.; Kivimaki M.; Knibbs L.D.; Kosen S.; Koul P.A.; Koyanagi A.; Kuate Defo B.; Kugbey N.; Lauriola P.; Lee P.H.; Leili M.; Lewycka S.; Li S.; Lim L.-L.; Linn S.; Liu Y.; Lorkowski S.; Mahasha P.W.; Mahotra N.B.; Majeed A.; Maleki A.; Malekzadeh R.; Mamun A.A.; Manafi N.; Martini S.; Meharie B.G.; Menezes R.G.; Mestrovic T.; Miazgowski B.; Miazgowski T.; Miller T.R.; Mini G.K.; Mirica A.; Mirrakhimov E.M.; Mohajer B.; Mohammed S.; Mohan V.; Mokdad A.H.; Monasta L.; Moraga P.; Morrison S.D.; Mueller U.O.; Mukhopadhyay S.; Mustafa G.; Muthupandian S.; Naik G.; Nangia V.; Ndwandwe D.E.; Negoi R.I.; Ningrum D.N.A.; Noubiap J.J.; Ogbo F.A.; Olagunju A.T.; Onwujekwe O.E.; Ortiz A.; Owolabi M.O.; P A M.; Panda-Jonas S.; Park E.-K.; Pashazadeh Kan F.; Pirsaheb M.; Postma M.J.; Pourjafar H.; Radfar A.; Rafiei A.; Rahim F.; Rahimi-Movaghar V.; Rahman M.A.; Rai R.K.; Ranabhat C.L.; Raoofi S.; Rawal L.; Renzaho A.M.N.; Rezapour A.; Ribeiro D.; Roever L.; Ronfani L.; Sabour S.; Saddik B.; Sadeghi E.; Saeedi Moghaddam S.; Sahebkar A.; Sahraian M.A.; Salimzadeh H.; Salvi S.S.; Samy A.M.; Sanabria J.; Sarmiento-Suarez R.; Sathish T.; Schmidt M.I.; Schutte A.E.; Sepanlou S.G.; Shaikh M.A.; Sharafi K.; Sheikh A.; Shigematsu M.; Shiri R.; Shirkoohi R.; Shuval K.; Soyiri I.N.; Tabares-Seisdedos R.; Tefera Y.M.; Tehrani-Banihashemi A.; Temsah M.-H.; Thankappan K.R.; Topor-Madry R.; Tudor Car L.; Ullah I.; Vacante M.; Valdez P.R.; Vasankari T.J.; Violante F.S.; Waheed Y.; Wolfe C.D.A.; Yamada T.; Yonemoto N.; Yu C.; Zaman S.B.; Zhang Y.; Zodpey S.; Lim S.S.; Stanaway J.D.; Brauer M.. - In: THE LANCET. PLANETARY HEALTH. - ISSN 2542-5196. - ELETTRONICO. - 6:7(2022), pp. e586-e600. [10.1016/S2542-5196(22)00122-X]

Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2·5 air pollution, 1990–2019: an analysis of data from the Global Burden of Disease Study 2019

Lauriola P.;Violante F. S.;
2022

Abstract

Background: Experimental and epidemiological studies indicate an association between exposure to particulate matter (PM) air pollution and increased risk of type 2 diabetes. In view of the high and increasing prevalence of diabetes, we aimed to quantify the burden of type 2 diabetes attributable to PM2·5 originating from ambient and household air pollution. Methods: We systematically compiled all relevant cohort and case-control studies assessing the effect of exposure to household and ambient fine particulate matter (PM2·5) air pollution on type 2 diabetes incidence and mortality. We derived an exposure–response curve from the extracted relative risk estimates using the MR-BRT (meta-regression—Bayesian, regularised, trimmed) tool. The estimated curve was linked to ambient and household PM2·5 exposures from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019, and estimates of the attributable burden (population attributable fractions and rates per 100 000 population of deaths and disability-adjusted life-years) for 204 countries from 1990 to 2019 were calculated. We also assessed the role of changes in exposure, population size, age, and type 2 diabetes incidence in the observed trend in PM2·5-attributable type 2 diabetes burden. All estimates are presented with 95% uncertainty intervals. Findings: In 2019, approximately a fifth of the global burden of type 2 diabetes was attributable to PM2·5 exposure, with an estimated 3·78 (95% uncertainty interval 2·68–4·83) deaths per 100 000 population and 167 (117–223) disability-adjusted life-years (DALYs) per 100 000 population. Approximately 13·4% (9·49–17·5) of deaths and 13·6% (9·73–17·9) of DALYs due to type 2 diabetes were contributed by ambient PM2·5, and 6·50% (4·22–9·53) of deaths and 5·92% (3·81–8·64) of DALYs by household air pollution. High burdens, in terms of numbers as well as rates, were estimated in Asia, sub-Saharan Africa, and South America. Since 1990, the attributable burden has increased by 50%, driven largely by population growth and ageing. Globally, the impact of reductions in household air pollution was largely offset by increased ambient PM2·5. Interpretation: Air pollution is a major risk factor for diabetes. We estimated that about a fifth of the global burden of type 2 diabetes is attributable PM2·5 pollution. Air pollution mitigation therefore might have an essential role in reducing the global disease burden resulting from type 2 diabetes. Funding: Bill & Melinda Gates Foundation.
2022
Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2·5 air pollution, 1990–2019: an analysis of data from the Global Burden of Disease Study 2019 / Burkart K.; Causey K.; Cohen A.J.; Wozniak S.S.; Salvi D.D.; Abbafati C.; Adekanmbi V.; Adsuar J.C.; Ahmadi K.; Alahdab F.; Al-Aly Z.; Alipour V.; Alvis-Guzman N.; Amegah A.K.; Andrei C.L.; Andrei T.; Ansari F.; Arabloo J.; Aremu O.; Aripov T.; Babaee E.; Banach M.; Barnett A.; Barnighausen T.W.; Bedi N.; Behzadifar M.; Bejot Y.; Bennett D.A.; Bensenor I.M.; Bernstein R.S.; Bhattacharyya K.; Bijani A.; Biondi A.; Bohlouli S.; Breitner S.; Brenner H.; Butt Z.A.; Camera L.A.; Cantu-Brito C.; Carvalho F.; Cerin E.; Chattu V.K.; Chauhan B.G.; Choi J.-Y.J.; Chu D.-T.; Dai X.; Dandona L.; Dandona R.; Daryani A.; Davletov K.; de Courten B.; Demeke F.M.; Denova-Gutierrez E.; Dharmaratne S.D.; Dhimal M.; Diaz D.; Djalalinia S.; Duncan B.B.; El Sayed Zaki M.; Eskandarieh S.; Fareed M.; Farzadfar F.; Fattahi N.; Fazlzadeh M.; Fernandes E.; Filip I.; Fischer F.; Foigt N.A.; Freitas M.; Ghashghaee A.; Gill P.S.; Ginawi I.A.; Gopalani S.V.; Guo Y.; Gupta R.D.; Habtewold T.D.; Hamadeh R.R.; Hamidi S.; Hankey G.J.; Hasanpoor E.; Hassen H.Y.; Hay S.I.; Heibati B.; Hole M.K.; Hossain N.; Househ M.; Irvani S.S.N.; Jaafari J.; Jakovljevic M.; Jha R.P.; Jonas J.B.; Jozwiak J.J.; Kasaeian A.; Kaydi N.; Khader Y.S.; Khafaie M.A.; Khan E.A.; Khan J.; Khan M.N.; Khatab K.; Khater A.M.; Kim Y.J.; Kimokoti R.W.; Kisa A.; Kivimaki M.; Knibbs L.D.; Kosen S.; Koul P.A.; Koyanagi A.; Kuate Defo B.; Kugbey N.; Lauriola P.; Lee P.H.; Leili M.; Lewycka S.; Li S.; Lim L.-L.; Linn S.; Liu Y.; Lorkowski S.; Mahasha P.W.; Mahotra N.B.; Majeed A.; Maleki A.; Malekzadeh R.; Mamun A.A.; Manafi N.; Martini S.; Meharie B.G.; Menezes R.G.; Mestrovic T.; Miazgowski B.; Miazgowski T.; Miller T.R.; Mini G.K.; Mirica A.; Mirrakhimov E.M.; Mohajer B.; Mohammed S.; Mohan V.; Mokdad A.H.; Monasta L.; Moraga P.; Morrison S.D.; Mueller U.O.; Mukhopadhyay S.; Mustafa G.; Muthupandian S.; Naik G.; Nangia V.; Ndwandwe D.E.; Negoi R.I.; Ningrum D.N.A.; Noubiap J.J.; Ogbo F.A.; Olagunju A.T.; Onwujekwe O.E.; Ortiz A.; Owolabi M.O.; P A M.; Panda-Jonas S.; Park E.-K.; Pashazadeh Kan F.; Pirsaheb M.; Postma M.J.; Pourjafar H.; Radfar A.; Rafiei A.; Rahim F.; Rahimi-Movaghar V.; Rahman M.A.; Rai R.K.; Ranabhat C.L.; Raoofi S.; Rawal L.; Renzaho A.M.N.; Rezapour A.; Ribeiro D.; Roever L.; Ronfani L.; Sabour S.; Saddik B.; Sadeghi E.; Saeedi Moghaddam S.; Sahebkar A.; Sahraian M.A.; Salimzadeh H.; Salvi S.S.; Samy A.M.; Sanabria J.; Sarmiento-Suarez R.; Sathish T.; Schmidt M.I.; Schutte A.E.; Sepanlou S.G.; Shaikh M.A.; Sharafi K.; Sheikh A.; Shigematsu M.; Shiri R.; Shirkoohi R.; Shuval K.; Soyiri I.N.; Tabares-Seisdedos R.; Tefera Y.M.; Tehrani-Banihashemi A.; Temsah M.-H.; Thankappan K.R.; Topor-Madry R.; Tudor Car L.; Ullah I.; Vacante M.; Valdez P.R.; Vasankari T.J.; Violante F.S.; Waheed Y.; Wolfe C.D.A.; Yamada T.; Yonemoto N.; Yu C.; Zaman S.B.; Zhang Y.; Zodpey S.; Lim S.S.; Stanaway J.D.; Brauer M.. - In: THE LANCET. PLANETARY HEALTH. - ISSN 2542-5196. - ELETTRONICO. - 6:7(2022), pp. e586-e600. [10.1016/S2542-5196(22)00122-X]
Burkart K.; Causey K.; Cohen A.J.; Wozniak S.S.; Salvi D.D.; Abbafati C.; Adekanmbi V.; Adsuar J.C.; Ahmadi K.; Alahdab F.; Al-Aly Z.; Alipour V.; Alvis-Guzman N.; Amegah A.K.; Andrei C.L.; Andrei T.; Ansari F.; Arabloo J.; Aremu O.; Aripov T.; Babaee E.; Banach M.; Barnett A.; Barnighausen T.W.; Bedi N.; Behzadifar M.; Bejot Y.; Bennett D.A.; Bensenor I.M.; Bernstein R.S.; Bhattacharyya K.; Bijani A.; Biondi A.; Bohlouli S.; Breitner S.; Brenner H.; Butt Z.A.; Camera L.A.; Cantu-Brito C.; Carvalho F.; Cerin E.; Chattu V.K.; Chauhan B.G.; Choi J.-Y.J.; Chu D.-T.; Dai X.; Dandona L.; Dandona R.; Daryani A.; Davletov K.; de Courten B.; Demeke F.M.; Denova-Gutierrez E.; Dharmaratne S.D.; Dhimal M.; Diaz D.; Djalalinia S.; Duncan B.B.; El Sayed Zaki M.; Eskandarieh S.; Fareed M.; Farzadfar F.; Fattahi N.; Fazlzadeh M.; Fernandes E.; Filip I.; Fischer F.; Foigt N.A.; Freitas M.; Ghashghaee A.; Gill P.S.; Ginawi I.A.; Gopalani S.V.; Guo Y.; Gupta R.D.; Habtewold T.D.; Hamadeh R.R.; Hamidi S.; Hankey G.J.; Hasanpoor E.; Hassen H.Y.; Hay S.I.; Heibati B.; Hole M.K.; Hossain N.; Househ M.; Irvani S.S.N.; Jaafari J.; Jakovljevic M.; Jha R.P.; Jonas J.B.; Jozwiak J.J.; Kasaeian A.; Kaydi N.; Khader Y.S.; Khafaie M.A.; Khan E.A.; Khan J.; Khan M.N.; Khatab K.; Khater A.M.; Kim Y.J.; Kimokoti R.W.; Kisa A.; Kivimaki M.; Knibbs L.D.; Kosen S.; Koul P.A.; Koyanagi A.; Kuate Defo B.; Kugbey N.; Lauriola P.; Lee P.H.; Leili M.; Lewycka S.; Li S.; Lim L.-L.; Linn S.; Liu Y.; Lorkowski S.; Mahasha P.W.; Mahotra N.B.; Majeed A.; Maleki A.; Malekzadeh R.; Mamun A.A.; Manafi N.; Martini S.; Meharie B.G.; Menezes R.G.; Mestrovic T.; Miazgowski B.; Miazgowski T.; Miller T.R.; Mini G.K.; Mirica A.; Mirrakhimov E.M.; Mohajer B.; Mohammed S.; Mohan V.; Mokdad A.H.; Monasta L.; Moraga P.; Morrison S.D.; Mueller U.O.; Mukhopadhyay S.; Mustafa G.; Muthupandian S.; Naik G.; Nangia V.; Ndwandwe D.E.; Negoi R.I.; Ningrum D.N.A.; Noubiap J.J.; Ogbo F.A.; Olagunju A.T.; Onwujekwe O.E.; Ortiz A.; Owolabi M.O.; P A M.; Panda-Jonas S.; Park E.-K.; Pashazadeh Kan F.; Pirsaheb M.; Postma M.J.; Pourjafar H.; Radfar A.; Rafiei A.; Rahim F.; Rahimi-Movaghar V.; Rahman M.A.; Rai R.K.; Ranabhat C.L.; Raoofi S.; Rawal L.; Renzaho A.M.N.; Rezapour A.; Ribeiro D.; Roever L.; Ronfani L.; Sabour S.; Saddik B.; Sadeghi E.; Saeedi Moghaddam S.; Sahebkar A.; Sahraian M.A.; Salimzadeh H.; Salvi S.S.; Samy A.M.; Sanabria J.; Sarmiento-Suarez R.; Sathish T.; Schmidt M.I.; Schutte A.E.; Sepanlou S.G.; Shaikh M.A.; Sharafi K.; Sheikh A.; Shigematsu M.; Shiri R.; Shirkoohi R.; Shuval K.; Soyiri I.N.; Tabares-Seisdedos R.; Tefera Y.M.; Tehrani-Banihashemi A.; Temsah M.-H.; Thankappan K.R.; Topor-Madry R.; Tudor Car L.; Ullah I.; Vacante M.; Valdez P.R.; Vasankari T.J.; Violante F.S.; Waheed Y.; Wolfe C.D.A.; Yamada T.; Yonemoto N.; Yu C.; Zaman S.B.; Zhang Y.; Zodpey S.; Lim S.S.; Stanaway J.D.; Brauer M.
File in questo prodotto:
File Dimensione Formato  
PIIS254251962200122X.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri
mmc1.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 564.87 kB
Formato Adobe PDF
564.87 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/898895
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 43
social impact