Additive Manufacturing (AM) is continuously increasing its appeal as a breakthrough production process due to well-established advantages compared to traditional manufacturing strategies based on chip removal or casting. The design of lightweight structures can exploit the AM advantages, thanks to the capability of shaping complex geometries where the constant level of stress can be achieved through Topology Optimization. Moreover, in transportation engineering and lightweight structures in general, thin-shell or thin-walled components are widely used for frames, fuselages, wings, car bodies, coaches, tanks or recipients. However, the application of topology optimization routines on thin-walled structures is not exempt from difficulties. This is true especially in the case of a distributed pressure load coming from fluid-structure interaction analysis. Coupling the benefits of TO methodology with the already good performances of thin-walled structures may lead to mechanically efficient shapes. This research addresses strategies to apply topology optimization on thin-walled structures. The effect of the local concentration of distributed load in a cloud of control points distributed along the surface of interest is considered and tested. Two case studies coming from industrial engineering have been carried out to show the capabilities of the proposed approach.
Bacciaglia A., Ceruti A., Ciccone F., Liverani A. (2023). Topology Optimization for Thin-Walled Structures with Distributed Loads. Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-15928-2_91].
Topology Optimization for Thin-Walled Structures with Distributed Loads
Bacciaglia A.
Primo
Methodology
;Ceruti A.Secondo
Writing – Review & Editing
;Ciccone F.Penultimo
Membro del Collaboration Group
;Liverani A.Ultimo
Supervision
2023
Abstract
Additive Manufacturing (AM) is continuously increasing its appeal as a breakthrough production process due to well-established advantages compared to traditional manufacturing strategies based on chip removal or casting. The design of lightweight structures can exploit the AM advantages, thanks to the capability of shaping complex geometries where the constant level of stress can be achieved through Topology Optimization. Moreover, in transportation engineering and lightweight structures in general, thin-shell or thin-walled components are widely used for frames, fuselages, wings, car bodies, coaches, tanks or recipients. However, the application of topology optimization routines on thin-walled structures is not exempt from difficulties. This is true especially in the case of a distributed pressure load coming from fluid-structure interaction analysis. Coupling the benefits of TO methodology with the already good performances of thin-walled structures may lead to mechanically efficient shapes. This research addresses strategies to apply topology optimization on thin-walled structures. The effect of the local concentration of distributed load in a cloud of control points distributed along the surface of interest is considered and tested. Two case studies coming from industrial engineering have been carried out to show the capabilities of the proposed approach.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.