When an output error model is fitted to data with noise-corrupted inputs using a prediction error method, a bias occurs. It was previously shown that the bias is of order O(1/delta) for a small pole-zero separation delta. These notes examine the same problem when an instrumental variable model is fitted. A similar result is shown to hold for the instrumental variable case.

Söderström, T., Soverini, U. (2022). Analyzing the Parameter Bias when an Instrumental Variable Method is Used with Noise-Corrupted Data. Uppsala : Department of Information Technology, Uppsala University.

Analyzing the Parameter Bias when an Instrumental Variable Method is Used with Noise-Corrupted Data

Soverini, Umberto
2022

Abstract

When an output error model is fitted to data with noise-corrupted inputs using a prediction error method, a bias occurs. It was previously shown that the bias is of order O(1/delta) for a small pole-zero separation delta. These notes examine the same problem when an instrumental variable model is fitted. A similar result is shown to hold for the instrumental variable case.
2022
Söderström, T., Soverini, U. (2022). Analyzing the Parameter Bias when an Instrumental Variable Method is Used with Noise-Corrupted Data. Uppsala : Department of Information Technology, Uppsala University.
Söderström, Tortsen; Soverini, Umberto
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/898321
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact