Diamond displays outstanding chemical, physical, and tribological properties, making it attractive for numerous applications ranging from biomedicine to tribology. However, the reaction of the materials with molecules present in the air, such as oxygen, hydrogen, and water, could significantly change the electronic and tribological properties of the films. In this study, we performed several density functional theory calculations to construct a database for the adsorption energies and dissociation barriers of these molecules on the most relevant diamond surfaces, including C(111), C(001), and C(110). The adsorption configurations, reaction paths, activation energies, and their influence on the structure of diamond surfaces are discussed. The results indicate that there is a strong correlation between adsorption energy and surface energy. Moreover, we found that the dissociation processes of oxygen molecules on these diamond surfaces can significantly alter the surface morphology and may affect the tribological properties of diamond films. These findings can help to advance the development and optimization of devices and antiwear coatings based on diamond.

Tran, N.V., Righi, M.C. (2022). Ab initio insights into the interaction mechanisms between H2, H2O, and O2 molecules with diamond surfaces. CARBON, 199, 497-507 [10.1016/j.carbon.2022.07.056].

Ab initio insights into the interaction mechanisms between H2, H2O, and O2 molecules with diamond surfaces

Righi, MC
2022

Abstract

Diamond displays outstanding chemical, physical, and tribological properties, making it attractive for numerous applications ranging from biomedicine to tribology. However, the reaction of the materials with molecules present in the air, such as oxygen, hydrogen, and water, could significantly change the electronic and tribological properties of the films. In this study, we performed several density functional theory calculations to construct a database for the adsorption energies and dissociation barriers of these molecules on the most relevant diamond surfaces, including C(111), C(001), and C(110). The adsorption configurations, reaction paths, activation energies, and their influence on the structure of diamond surfaces are discussed. The results indicate that there is a strong correlation between adsorption energy and surface energy. Moreover, we found that the dissociation processes of oxygen molecules on these diamond surfaces can significantly alter the surface morphology and may affect the tribological properties of diamond films. These findings can help to advance the development and optimization of devices and antiwear coatings based on diamond.
2022
Tran, N.V., Righi, M.C. (2022). Ab initio insights into the interaction mechanisms between H2, H2O, and O2 molecules with diamond surfaces. CARBON, 199, 497-507 [10.1016/j.carbon.2022.07.056].
Tran, NV; Righi, MC
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/898304
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact