In this paper, we describe the fixed locus of a symplectic involution on a hyper-Kahler manifold of type K3([n]) or of Kummer n type. We prove that the fixed locus consists of finitely many copies of deformations of Hilbert schemes of K3 surfaces of lower dimensions and isolated fixed points.
Kamenova L., Mongardi G., Oblomkov A. (2022). Symplectic involutions of K3[n] type and Kummer n type manifolds. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 54(3), 894-909 [10.1112/blms.12594].
Symplectic involutions of K3[n] type and Kummer n type manifolds
Mongardi G.
;
2022
Abstract
In this paper, we describe the fixed locus of a symplectic involution on a hyper-Kahler manifold of type K3([n]) or of Kummer n type. We prove that the fixed locus consists of finitely many copies of deformations of Hilbert schemes of K3 surfaces of lower dimensions and isolated fixed points.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
K3_inv_v9-1.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
499.04 kB
Formato
Adobe PDF
|
499.04 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.