In this paper, we describe the fixed locus of a symplectic involution on a hyper-Kahler manifold of type K3([n]) or of Kummer n type. We prove that the fixed locus consists of finitely many copies of deformations of Hilbert schemes of K3 surfaces of lower dimensions and isolated fixed points.

Kamenova L., Mongardi G., Oblomkov A. (2022). Symplectic involutions of K3[n] type and Kummer n type manifolds. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 54(3), 894-909 [10.1112/blms.12594].

Symplectic involutions of K3[n] type and Kummer n type manifolds

Mongardi G.
;
2022

Abstract

In this paper, we describe the fixed locus of a symplectic involution on a hyper-Kahler manifold of type K3([n]) or of Kummer n type. We prove that the fixed locus consists of finitely many copies of deformations of Hilbert schemes of K3 surfaces of lower dimensions and isolated fixed points.
2022
Kamenova L., Mongardi G., Oblomkov A. (2022). Symplectic involutions of K3[n] type and Kummer n type manifolds. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 54(3), 894-909 [10.1112/blms.12594].
Kamenova L.; Mongardi G.; Oblomkov A.
File in questo prodotto:
File Dimensione Formato  
K3_inv_v9-1.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 499.04 kB
Formato Adobe PDF
499.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/897943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact