In this paper we study the notion of perimeter associated with doubling metric measures or strongly A∞ weights. We prove that the metric perimeter in the sense of L. Ambrosio and M. Miranda jr. coincides with the metric Minkowski content and can be obtained also as a Γ-limit of Modica-Mortola type degenerate integral functionals.

Baldi, A., Franchi, B. (2003). A Γ-convergence result for doubling metric measures and associated perimeters. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 16(3), 283-298 [10.1007/s005260100151].

A Γ-convergence result for doubling metric measures and associated perimeters

Baldi A.;Franchi B.
2003

Abstract

In this paper we study the notion of perimeter associated with doubling metric measures or strongly A∞ weights. We prove that the metric perimeter in the sense of L. Ambrosio and M. Miranda jr. coincides with the metric Minkowski content and can be obtained also as a Γ-limit of Modica-Mortola type degenerate integral functionals.
2003
Baldi, A., Franchi, B. (2003). A Γ-convergence result for doubling metric measures and associated perimeters. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 16(3), 283-298 [10.1007/s005260100151].
Baldi, A.; Franchi, B.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/897492
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact