Data warehousing systems enable enterprise managers to acquire and integrate information from heterogeneous sources and to query very large databases efficiently. Building a data warehouse requires adopting design and implementation techniques completely different from those underlying operational information systems. Though most scientific literature on the design of data warehouses concerns their logical and physical models, an accurate conceptual design is the necessary foundation for building a DW which is well-documented and fully satisfies requirements. In this paper we formalize a graphical conceptual model for data warehouses, called Dimensional Fact model, and propose a semi-automated methodology to build it from the pre-existing (conceptual or logical) schemes describing the enterprise relational database. The representation of reality built using our conceptual model consists of a set of fact schemes whose basic elements are facts, measures, attributes, dimensions and hierarchies; other features which may be represented on fact schemes are the additivity of fact attributes along dimensions, the optionality of dimension attributes and the existence of non-dimension attributes. Compatible fact schemes may be overlapped in order to relate and compare data for drill-across queries. Fact schemes should be integrated with information of the conjectured workload, to be used as the input of logical and physical design phases; to this end, we propose a simple language to denote data warehouse queries in terms of sets of fact instances. © World Scientific Publishing Company.

Golfarelli M., Maio D., Rizzi S. (1998). The dimensional fact model: A conceptual model for data warehouses. INTERNATIONAL JOURNAL OF COOPERATIVE INFORMATION SYSTEMS, 7(2-3), 215-247 [10.1142/s0218843098000118].

The dimensional fact model: A conceptual model for data warehouses

Golfarelli M.;Maio D.;Rizzi S.
1998

Abstract

Data warehousing systems enable enterprise managers to acquire and integrate information from heterogeneous sources and to query very large databases efficiently. Building a data warehouse requires adopting design and implementation techniques completely different from those underlying operational information systems. Though most scientific literature on the design of data warehouses concerns their logical and physical models, an accurate conceptual design is the necessary foundation for building a DW which is well-documented and fully satisfies requirements. In this paper we formalize a graphical conceptual model for data warehouses, called Dimensional Fact model, and propose a semi-automated methodology to build it from the pre-existing (conceptual or logical) schemes describing the enterprise relational database. The representation of reality built using our conceptual model consists of a set of fact schemes whose basic elements are facts, measures, attributes, dimensions and hierarchies; other features which may be represented on fact schemes are the additivity of fact attributes along dimensions, the optionality of dimension attributes and the existence of non-dimension attributes. Compatible fact schemes may be overlapped in order to relate and compare data for drill-across queries. Fact schemes should be integrated with information of the conjectured workload, to be used as the input of logical and physical design phases; to this end, we propose a simple language to denote data warehouse queries in terms of sets of fact instances. © World Scientific Publishing Company.
1998
Golfarelli M., Maio D., Rizzi S. (1998). The dimensional fact model: A conceptual model for data warehouses. INTERNATIONAL JOURNAL OF COOPERATIVE INFORMATION SYSTEMS, 7(2-3), 215-247 [10.1142/s0218843098000118].
Golfarelli M.; Maio D.; Rizzi S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/897470
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 385
  • ???jsp.display-item.citation.isi??? 231
social impact