We study inference on the common stochastic trends in a non-stationary, N-variate time series yt, in the possible presence of heavy tails. We propose a novel methodology which does not require any knowledge or estimation of the tail index, or even knowledge as to whether certain moments (such as the variance) exist or not, and develop an estimator of the number of stochastic trends m based on the eigenvalues of the sample second moment matrix of y_t. We study the rates of such eigenvalues, showing that the first m ones diverge, as the sample size T passes to infinity, at a rate faster by O (T) than the remaining N – m ones, irrespective of the tail index. We thus exploit this eigen-gap by constructing, for each eigenvalue, a test statistic which diverges to positive infinity or drifts to zero according to whether the relevant eigenvalue belongs to the set of the first m eigenvalues or not. We then construct a randomised statistic based on this, using it as part of a sequential testing procedure, ensuring consistency of the resulting estimator of m. We also discuss an estimator of the common trends based on principal components and show that, up to a an invertible linear transformation, such estimator is consistent in the sense that the estimation error is of smaller order than the trend itself. Importantly, we present the case in which we relax the standard assumption of i.i.d. innovations, by allowing for heterogeneity of a very general form in the scale of the innovations. Finally, we develop an extension to the large dimensional case. A Monte Carlo study shows that the proposed estimator for m performs particularly well, even in samples of small size. We complete the paper by presenting two illustrative applications covering commodity prices and interest rates data.

Barigozzi, M., Cavaliere, G., Trapani, L. (2024). Inference in heavy-tailed non-stationary multivariate time series. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 119(545), 565-581 [10.1080/01621459.2022.2128807].

Inference in heavy-tailed non-stationary multivariate time series

Barigozzi, Matteo;Cavaliere, Giuseppe;
2024

Abstract

We study inference on the common stochastic trends in a non-stationary, N-variate time series yt, in the possible presence of heavy tails. We propose a novel methodology which does not require any knowledge or estimation of the tail index, or even knowledge as to whether certain moments (such as the variance) exist or not, and develop an estimator of the number of stochastic trends m based on the eigenvalues of the sample second moment matrix of y_t. We study the rates of such eigenvalues, showing that the first m ones diverge, as the sample size T passes to infinity, at a rate faster by O (T) than the remaining N – m ones, irrespective of the tail index. We thus exploit this eigen-gap by constructing, for each eigenvalue, a test statistic which diverges to positive infinity or drifts to zero according to whether the relevant eigenvalue belongs to the set of the first m eigenvalues or not. We then construct a randomised statistic based on this, using it as part of a sequential testing procedure, ensuring consistency of the resulting estimator of m. We also discuss an estimator of the common trends based on principal components and show that, up to a an invertible linear transformation, such estimator is consistent in the sense that the estimation error is of smaller order than the trend itself. Importantly, we present the case in which we relax the standard assumption of i.i.d. innovations, by allowing for heterogeneity of a very general form in the scale of the innovations. Finally, we develop an extension to the large dimensional case. A Monte Carlo study shows that the proposed estimator for m performs particularly well, even in samples of small size. We complete the paper by presenting two illustrative applications covering commodity prices and interest rates data.
2024
Barigozzi, M., Cavaliere, G., Trapani, L. (2024). Inference in heavy-tailed non-stationary multivariate time series. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 119(545), 565-581 [10.1080/01621459.2022.2128807].
Barigozzi, Matteo; Cavaliere, Giuseppe; Trapani, Lorenzo
File in questo prodotto:
File Dimensione Formato  
Inference in Heavy-Tailed Nonstationary Multivariate Time Series.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/897405
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact