The successful application of argument mining in the legal domain can dramatically impact many disciplines related to law. For this purpose, we present Demosthenes, a novel corpus for argument mining in legal documents, composed of 40 decisions of the Court of Justice of the European Union on matters of fiscal state aid. The annotation specifies three hierarchical levels of information: the argumentative elements, their types, and their argument schemes. In our experimental evaluation, we address 4 different classification tasks, combining advanced language models and traditional classifiers.

Grundler Giulia, S.P. (2022). Detecting Arguments in CJEU Decisions on Fiscal State Aid. International Conference on Computational Linguistics.

Detecting Arguments in CJEU Decisions on Fiscal State Aid

Grundler Giulia
Co-primo
;
Santin Piera
Co-primo
;
Galassi Andrea
;
Galli Federico;Godano Francesco;Lagioia Francesca
;
Palmieri Elena;Ruggeri Federico;Sartor Giovanni;Torroni Paolo
2022

Abstract

The successful application of argument mining in the legal domain can dramatically impact many disciplines related to law. For this purpose, we present Demosthenes, a novel corpus for argument mining in legal documents, composed of 40 decisions of the Court of Justice of the European Union on matters of fiscal state aid. The annotation specifies three hierarchical levels of information: the argumentative elements, their types, and their argument schemes. In our experimental evaluation, we address 4 different classification tasks, combining advanced language models and traditional classifiers.
2022
Proceedings of the 9th Workshop on Argument Mining
143
157
Grundler Giulia, S.P. (2022). Detecting Arguments in CJEU Decisions on Fiscal State Aid. International Conference on Computational Linguistics.
Grundler Giulia , Santin Piera , Galassi Andrea , Galli Federico , Godano Francesco , Lagioia Francesca , Palmieri Elena , Ruggeri Federi...espandi
File in questo prodotto:
File Dimensione Formato  
2022.argmining-1.14.pdf

accesso aperto

Descrizione: published
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 303.97 kB
Formato Adobe PDF
303.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/897007
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact