The successful application of argument mining in the legal domain can dramatically impact many disciplines related to law. For this purpose, we present Demosthenes, a novel corpus for argument mining in legal documents, composed of 40 decisions of the Court of Justice of the European Union on matters of fiscal state aid. The annotation specifies three hierarchical levels of information: the argumentative elements, their types, and their argument schemes. In our experimental evaluation, we address 4 different classification tasks, combining advanced language models and traditional classifiers.
Grundler Giulia, S.P. (2022). Detecting Arguments in CJEU Decisions on Fiscal State Aid. International Conference on Computational Linguistics.
Detecting Arguments in CJEU Decisions on Fiscal State Aid
Grundler GiuliaCo-primo
;Santin PieraCo-primo
;Galassi Andrea
;Galli Federico;Godano Francesco;Lagioia Francesca
;Palmieri Elena;Ruggeri Federico;Sartor Giovanni;Torroni Paolo
2022
Abstract
The successful application of argument mining in the legal domain can dramatically impact many disciplines related to law. For this purpose, we present Demosthenes, a novel corpus for argument mining in legal documents, composed of 40 decisions of the Court of Justice of the European Union on matters of fiscal state aid. The annotation specifies three hierarchical levels of information: the argumentative elements, their types, and their argument schemes. In our experimental evaluation, we address 4 different classification tasks, combining advanced language models and traditional classifiers.File | Dimensione | Formato | |
---|---|---|---|
2022.argmining-1.14.pdf
accesso aperto
Descrizione: published
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
303.97 kB
Formato
Adobe PDF
|
303.97 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.