Let F be a polystable sheaf on a smooth minimal projective surface of Kodaira dimension 0. Then the differential graded (DG) Lie algebra RHom(F, F) of derived endomorphisms of F is formal. The proof is based on the study of equivariant L-infinity minimal models of DG Lie algebras equipped with a cyclic structure of degree 2 which is non-degenerate in cohomology, and does not rely (even for K3 surfaces) on previous results on the same subject.

Formality conjecture for minimal surfaces of Kodaira dimension 0 / Bandiera, R.; Manetti, M.; Meazzini, F.. - In: COMPOSITIO MATHEMATICA. - ISSN 0010-437X. - STAMPA. - 157:2(2021), pp. 215-235. [10.1112/S0010437X20007605]

Formality conjecture for minimal surfaces of Kodaira dimension 0

Meazzini, F.
2021

Abstract

Let F be a polystable sheaf on a smooth minimal projective surface of Kodaira dimension 0. Then the differential graded (DG) Lie algebra RHom(F, F) of derived endomorphisms of F is formal. The proof is based on the study of equivariant L-infinity minimal models of DG Lie algebras equipped with a cyclic structure of degree 2 which is non-degenerate in cohomology, and does not rely (even for K3 surfaces) on previous results on the same subject.
2021
Formality conjecture for minimal surfaces of Kodaira dimension 0 / Bandiera, R.; Manetti, M.; Meazzini, F.. - In: COMPOSITIO MATHEMATICA. - ISSN 0010-437X. - STAMPA. - 157:2(2021), pp. 215-235. [10.1112/S0010437X20007605]
Bandiera, R.; Manetti, M.; Meazzini, F.
File in questo prodotto:
File Dimensione Formato  
Formality-conjecture_2021.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 511.61 kB
Formato Adobe PDF
511.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/896937
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
social impact