Let X be a Noetherian separated and finite dimensional scheme over a field K of characteristic zero. The goal of this paper is to study deformations of X over a differential graded local Artin K-algebra by using local Tate–Quillen resolutions, i.e., the algebraic analogous of the Palamodov's resolvent of a complex space. The above goal is achieved by describing the DG-Lie algebra controlling deformation theory of a diagram of differential graded commutative algebras, indexed by a direct Reedy category.
Manetti M., Meazzini F. (2020). Deformations of algebraic schemes via Reedy–Palamodov cofibrant resolutions. INDAGATIONES MATHEMATICAE, 31(1), 7-32 [10.1016/j.indag.2019.08.007].
Deformations of algebraic schemes via Reedy–Palamodov cofibrant resolutions
Meazzini F.
2020
Abstract
Let X be a Noetherian separated and finite dimensional scheme over a field K of characteristic zero. The goal of this paper is to study deformations of X over a differential graded local Artin K-algebra by using local Tate–Quillen resolutions, i.e., the algebraic analogous of the Palamodov's resolvent of a complex space. The above goal is achieved by describing the DG-Lie algebra controlling deformation theory of a diagram of differential graded commutative algebras, indexed by a direct Reedy category.File | Dimensione | Formato | |
---|---|---|---|
Manetti_Deformation-of-algebraic_2020.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
1.17 MB
Formato
Adobe PDF
|
1.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.