Consider a finite acyclic quiver Q and a quasi-Frobenius ring R. We endow the category of quiver representations over R with a model structure, whose homotopy category is equivalent to the stable category of Gorenstein-projective modules over the path algebra RQ. As an application, we then characterize Gorenstein-projective RQ-modules in terms of the corresponding quiver R-representations; this generalizes a result obtained by Luo-Zhang to the case of not necessarily finitely generated RQ-modules, and partially recover results due to Enochs-Estrada-García Rozas, and to Eshraghi-Hafezi-Salarian. Our approach to the problem is completely different since the proofs mainly rely on model category theory.

Meazzini F. (2021). Quiver representations and Gorenstein-projective modules. RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI, 42(1), 1-33.

Quiver representations and Gorenstein-projective modules

Meazzini F.
2021

Abstract

Consider a finite acyclic quiver Q and a quasi-Frobenius ring R. We endow the category of quiver representations over R with a model structure, whose homotopy category is equivalent to the stable category of Gorenstein-projective modules over the path algebra RQ. As an application, we then characterize Gorenstein-projective RQ-modules in terms of the corresponding quiver R-representations; this generalizes a result obtained by Luo-Zhang to the case of not necessarily finitely generated RQ-modules, and partially recover results due to Enochs-Estrada-García Rozas, and to Eshraghi-Hafezi-Salarian. Our approach to the problem is completely different since the proofs mainly rely on model category theory.
2021
Meazzini F. (2021). Quiver representations and Gorenstein-projective modules. RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI, 42(1), 1-33.
Meazzini F.
File in questo prodotto:
File Dimensione Formato  
pubblicazione - RM.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 460.89 kB
Formato Adobe PDF
460.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/896934
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact