We obtain a global version in the N-dimensional torus of the Metivier inequality for analytic and Gevrey hypoellipticity, and based on it we introduce a class of globally analytic hypoelliptic operators which remain so after suitable lower order perturbations. We also introduce a new class of analytic (pseudodifferential) operators on the torus whose calculus allows us to study the corresponding perturbation problem in a far more general context.

G. Chinni, P. D. Cordaro (2016). On global analytic and Gevrey hypoellipticity on the torus and the M??tivier inequality. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 42(1), 121-141 [10.1080/03605302.2016.1258577].

On global analytic and Gevrey hypoellipticity on the torus and the M??tivier inequality

G. Chinni;
2016

Abstract

We obtain a global version in the N-dimensional torus of the Metivier inequality for analytic and Gevrey hypoellipticity, and based on it we introduce a class of globally analytic hypoelliptic operators which remain so after suitable lower order perturbations. We also introduce a new class of analytic (pseudodifferential) operators on the torus whose calculus allows us to study the corresponding perturbation problem in a far more general context.
2016
G. Chinni, P. D. Cordaro (2016). On global analytic and Gevrey hypoellipticity on the torus and the M??tivier inequality. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 42(1), 121-141 [10.1080/03605302.2016.1258577].
G. Chinni; P. D. Cordaro
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/896110
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact