The interest in and need for carbon-free fuels that do not rely on fossil fuels are constantly growing from both environmental and energetic perspectives. Green hydrogen production is at the core of the transition away from conventional fuels. Along with popularly investigated pathways for hydrogen production, thermochemical water splitting using redox materials is an interesting option for utilizing thermal energy, as this approach makes use of temperature looping over the material to produce hydrogen from water. Herein, two-step thermochemical water splitting processes are discussed and the key aspects are analyzed using the most relevant information present in the literature. Redox materials and their compositions, which have been proven to be efficient for this reaction, are reported. Attention is focused on non-volatile redox oxides, as the quenching step required for volatile redox materials is unnecessary. Reactors that could be used to conduct the reduction and oxidation reaction are discussed. The most promising materials are compared to each other using a multi-criteria analysis, providing a direction for future research. As evident, ferrite supported on yttrium-stabilized zirconia, ceria doped with zirconia or samarium and ferrite doped with nickel as the core and an yttrium (III) oxide shell are promising choices. Isothermal cycling and lowering of the reduction temperature are outlined as future directions towards increasing hydrogen yields and improving the cyclability.

A Comprehensive Review on Two-Step Thermochemical Water Splitting for Hydrogen Production in a Redox Cycle / Daphne Oudejans; Michele Offidani; Achilleas Constantinou; Stefania Albonetti; Nikolaos Dimitratos; Atul Bansode. - In: ENERGIES. - ISSN 1996-1073. - ELETTRONICO. - 15:9(2022), pp. 3044.1-3044.24. [10.3390/en15093044]

A Comprehensive Review on Two-Step Thermochemical Water Splitting for Hydrogen Production in a Redox Cycle

Michele Offidani;Stefania Albonetti;Nikolaos Dimitratos;
2022

Abstract

The interest in and need for carbon-free fuels that do not rely on fossil fuels are constantly growing from both environmental and energetic perspectives. Green hydrogen production is at the core of the transition away from conventional fuels. Along with popularly investigated pathways for hydrogen production, thermochemical water splitting using redox materials is an interesting option for utilizing thermal energy, as this approach makes use of temperature looping over the material to produce hydrogen from water. Herein, two-step thermochemical water splitting processes are discussed and the key aspects are analyzed using the most relevant information present in the literature. Redox materials and their compositions, which have been proven to be efficient for this reaction, are reported. Attention is focused on non-volatile redox oxides, as the quenching step required for volatile redox materials is unnecessary. Reactors that could be used to conduct the reduction and oxidation reaction are discussed. The most promising materials are compared to each other using a multi-criteria analysis, providing a direction for future research. As evident, ferrite supported on yttrium-stabilized zirconia, ceria doped with zirconia or samarium and ferrite doped with nickel as the core and an yttrium (III) oxide shell are promising choices. Isothermal cycling and lowering of the reduction temperature are outlined as future directions towards increasing hydrogen yields and improving the cyclability.
2022
A Comprehensive Review on Two-Step Thermochemical Water Splitting for Hydrogen Production in a Redox Cycle / Daphne Oudejans; Michele Offidani; Achilleas Constantinou; Stefania Albonetti; Nikolaos Dimitratos; Atul Bansode. - In: ENERGIES. - ISSN 1996-1073. - ELETTRONICO. - 15:9(2022), pp. 3044.1-3044.24. [10.3390/en15093044]
Daphne Oudejans; Michele Offidani; Achilleas Constantinou; Stefania Albonetti; Nikolaos Dimitratos; Atul Bansode
File in questo prodotto:
File Dimensione Formato  
energies-15-03044-v2 (1).pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 4.02 MB
Formato Adobe PDF
4.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/895437
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact