We show that index 1 Fano 3-folds which lie in weighted Grassmannians in their total anticanonical embedding have finite au- tomorphism group, and we relate the deformation theory of any Fano 3-fold that has a K3 elephant to its Hodge theory. Combining these re- sults with standard Gorenstein projection techniques calculates both the number of deformations and the Hodge numbers of most quasis- mooth Fano 3-folds in low codimension. This provides detailed new information for hundreds of families of Fano 3-folds.

Hodge numbers and deformations of fano 3-folds

Fatighenti E.
2020

Abstract

We show that index 1 Fano 3-folds which lie in weighted Grassmannians in their total anticanonical embedding have finite au- tomorphism group, and we relate the deformation theory of any Fano 3-fold that has a K3 elephant to its Hodge theory. Combining these re- sults with standard Gorenstein projection techniques calculates both the number of deformations and the Hodge numbers of most quasis- mooth Fano 3-folds in low codimension. This provides detailed new information for hundreds of families of Fano 3-folds.
File in questo prodotto:
File Dimensione Formato  
Brown_etal_DM_20200228.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 403.15 kB
Formato Adobe PDF
403.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/895407
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact