We explore the transformer neural network architecture for modeling music, specifically Irish and Swedish traditional dance music. Given the repetitive structures of these kinds of music, the transformer should be as successful with fewer parameters and complexity as the hitherto most successful model, a vanilla long short-term memory network. We find that achieving good performance with the transformer is not straightforward, and careful consideration is needed for the sampling strategy, evaluating intermediate outputs in relation to engineering choices, and finally analyzing what the model learns. We discuss these points with several illustrations, providing reusable insights for engineering other music generation systems. We also report the high performance of our final transformer model in a competition of music generation systems focused on a type of Swedish dance.
Casini, L., Sturm, B.L.T. (2022). Tradformer: A Transformer Model of Traditional Music Transcriptions [10.24963/ijcai.2022/681].
Tradformer: A Transformer Model of Traditional Music Transcriptions
Casini, Luca
Primo
;
2022
Abstract
We explore the transformer neural network architecture for modeling music, specifically Irish and Swedish traditional dance music. Given the repetitive structures of these kinds of music, the transformer should be as successful with fewer parameters and complexity as the hitherto most successful model, a vanilla long short-term memory network. We find that achieving good performance with the transformer is not straightforward, and careful consideration is needed for the sampling strategy, evaluating intermediate outputs in relation to engineering choices, and finally analyzing what the model learns. We discuss these points with several illustrations, providing reusable insights for engineering other music generation systems. We also report the high performance of our final transformer model in a competition of music generation systems focused on a type of Swedish dance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.