The C^∞-regularity up to the boundary of solutions to the Dirichlet problem: Lu = = f ∈ C^∞ (Ω̄),u|∂Ω = g ∈ C∞ (∂Ω) is proved, using a comparison principle of L with a Hörmander's type operator Σ Xj*Xj, where Ω is a smooth bounded open subset of Rn, and L = - Σi,j ∂i(aij(x)∂j) + c(x) is a second-order degenerate elliptic operator with smooth coefficients, satisfying the so-called Fefferman-Phong's condition.

A. Parmeggiani, C.X. (1997). The Dirichlet problem for sub-elliptic second order equations. ANNALI DI MATEMATICA PURA ED APPLICATA, 173(1), 233-243 [10.1007/BF01783470].

The Dirichlet problem for sub-elliptic second order equations

A. Parmeggiani;
1997

Abstract

The C^∞-regularity up to the boundary of solutions to the Dirichlet problem: Lu = = f ∈ C^∞ (Ω̄),u|∂Ω = g ∈ C∞ (∂Ω) is proved, using a comparison principle of L with a Hörmander's type operator Σ Xj*Xj, where Ω is a smooth bounded open subset of Rn, and L = - Σi,j ∂i(aij(x)∂j) + c(x) is a second-order degenerate elliptic operator with smooth coefficients, satisfying the so-called Fefferman-Phong's condition.
1997
A. Parmeggiani, C.X. (1997). The Dirichlet problem for sub-elliptic second order equations. ANNALI DI MATEMATICA PURA ED APPLICATA, 173(1), 233-243 [10.1007/BF01783470].
A. Parmeggiani, C.-J. Xu
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/893771
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact