We propose a hybrid sensorless observer for permanent magnet synchronous machines with global asymptotic stability guarantees. Exploiting the constraint of the rotor flux on a circle of unknown radius, we design an integrator system with periodic jumps triggered by a clock to generate a linear regression containing the flux estimation error. Then, a normalized projected gradient descent identifier provides the observer estimates. For the closed-loop system, it is shown that there exists a robustly globally asymptotically stable compact attractor, which, additionally, ensures zero estimation error if appropriate Persistency of Excitation (PE) conditions are satisfied. In this respect, sufficient conditions ensuring PE are provided for the angular speed and the clock period.

A Hybrid Sensorless Observer for the Robust Global Asymptotic Flux Reconstruction of Permanent Magnet Synchronous Machines

Bosso A.
;
Tilli A.;Conficoni C.
2022

Abstract

We propose a hybrid sensorless observer for permanent magnet synchronous machines with global asymptotic stability guarantees. Exploiting the constraint of the rotor flux on a circle of unknown radius, we design an integrator system with periodic jumps triggered by a clock to generate a linear regression containing the flux estimation error. Then, a normalized projected gradient descent identifier provides the observer estimates. For the closed-loop system, it is shown that there exists a robustly globally asymptotically stable compact attractor, which, additionally, ensures zero estimation error if appropriate Persistency of Excitation (PE) conditions are satisfied. In this respect, sufficient conditions ensuring PE are provided for the angular speed and the clock period.
Bosso A.; Tilli A.; Conficoni C.
File in questo prodotto:
File Dimensione Formato  
A_Hybrid_Sensorless_Observer_for_the_Robust_Global_Asymptotic_Flux_Reconstruction_of_Permanent_Magnet_Synchronous_Machines.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 479.97 kB
Formato Adobe PDF
479.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/893608
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact