This work reports about an end-to-end business analytics experiment, applying predictive and prescriptive analytics to real-time bidding support for fantasy football draft auctions. Forecast methods are used to quantify the expected return of each investment alternative, while subgradient optimization is used to provide adaptive online recommendations on the allocation of scarce budget resources. A distributed front-end implementation of the prescriptive modules and the rankings of simulated leagues testify the viability of this architecture for actual support.

Vittorio Maniezzo, Fabian Andres Aspee Encina (2022). Predictive Analytics for Real-time Auction Bidding Support: a Case on Fantasy Football. SN OPERATIONS RESEARCH FORUM, 3(3), 1-23 [10.1007/s43069-022-00160-w].

Predictive Analytics for Real-time Auction Bidding Support: a Case on Fantasy Football

Vittorio Maniezzo
;
Fabian Andres Aspee Encina
2022

Abstract

This work reports about an end-to-end business analytics experiment, applying predictive and prescriptive analytics to real-time bidding support for fantasy football draft auctions. Forecast methods are used to quantify the expected return of each investment alternative, while subgradient optimization is used to provide adaptive online recommendations on the allocation of scarce budget resources. A distributed front-end implementation of the prescriptive modules and the rankings of simulated leagues testify the viability of this architecture for actual support.
2022
Vittorio Maniezzo, Fabian Andres Aspee Encina (2022). Predictive Analytics for Real-time Auction Bidding Support: a Case on Fantasy Football. SN OPERATIONS RESEARCH FORUM, 3(3), 1-23 [10.1007/s43069-022-00160-w].
Vittorio Maniezzo; Fabian Andres Aspee Encina
File in questo prodotto:
File Dimensione Formato  
orForum_published.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.64 MB
Formato Adobe PDF
2.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/893586
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact