We prove that the asymptotic behavior of the Stratonovich counterpart of the Itô’s type stochastic SIR model investigated in Tornatore et al. (2005), Ji and Jiang (2012, 2014) is ruled by the same threshold as the deterministic system. In other words, in contrast to the Itô’s model, the intensity of the noise described through the Stratonovich calculus is not relevant for the extinction of the disease. The Stratonovich interpretation of the model is motivated by the parameter perturbation technique, employed on the disease transmission coefficient and used to implement environmental randomness, in combination with the classical Wong–Zakai approximation argument.

Itô vs Stratonovich stochastic SIR models

Lanconelli A.
;
Mori M.
2022

Abstract

We prove that the asymptotic behavior of the Stratonovich counterpart of the Itô’s type stochastic SIR model investigated in Tornatore et al. (2005), Ji and Jiang (2012, 2014) is ruled by the same threshold as the deterministic system. In other words, in contrast to the Itô’s model, the intensity of the noise described through the Stratonovich calculus is not relevant for the extinction of the disease. The Stratonovich interpretation of the model is motivated by the parameter perturbation technique, employed on the disease transmission coefficient and used to implement environmental randomness, in combination with the classical Wong–Zakai approximation argument.
2022
Lanconelli A.; Mori M.
File in questo prodotto:
File Dimensione Formato  
11585_893412.pdf

embargo fino al 31/12/2023

Descrizione: Post-print con copertina
Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/893412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact