Generations of scientists have been captivated by ion channels and how they control the workings of the cell by admitting ions from one side of the cell membrane to the other. Elucidating the molecular determinants of ion conduction and selectivity are two of the most fundamental issues in the field of biophysics. Combined with ongoing progress in structural studies, modeling and simulation have been an integral part of the development of the field. As of this writing, the relentless growth in computational power, the development of new algorithms to tackle the so-called rare events, improved force-field parameters, and the concomitant increasing availability of membrane protein structures, allow simulations to contribute even further, providing more-complete models of ion conduction and selectivity in ion channels. In this report, we give an overview of the recent progress made by simulation studies on the understanding of ion permeation in selective and nonselective ion channels.

FURINI, S., Domene, C. (2013). K(+) and Na(+) conduction in selective and nonselective ion channels via molecular dynamics simulations. BIOPHYSICAL JOURNAL, 105(8), 1737-1745 [10.1016/j.bpj.2013.08.049].

K(+) and Na(+) conduction in selective and nonselective ion channels via molecular dynamics simulations

FURINI, SIMONE
Primo
;
2013

Abstract

Generations of scientists have been captivated by ion channels and how they control the workings of the cell by admitting ions from one side of the cell membrane to the other. Elucidating the molecular determinants of ion conduction and selectivity are two of the most fundamental issues in the field of biophysics. Combined with ongoing progress in structural studies, modeling and simulation have been an integral part of the development of the field. As of this writing, the relentless growth in computational power, the development of new algorithms to tackle the so-called rare events, improved force-field parameters, and the concomitant increasing availability of membrane protein structures, allow simulations to contribute even further, providing more-complete models of ion conduction and selectivity in ion channels. In this report, we give an overview of the recent progress made by simulation studies on the understanding of ion permeation in selective and nonselective ion channels.
2013
FURINI, S., Domene, C. (2013). K(+) and Na(+) conduction in selective and nonselective ion channels via molecular dynamics simulations. BIOPHYSICAL JOURNAL, 105(8), 1737-1745 [10.1016/j.bpj.2013.08.049].
FURINI, SIMONE; Domene, Carmen
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/893072
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 33
social impact