We present NEAR, a new experimental area at the CERN-n_TOF facility and a possible setup for cross section measurements of interest to nuclear astrophysics. This was recently realized with the aim of performing spectral-averaged neutron-capture cross section measurements by means of the activation technique. The recently commissioned NEAR station at n_TOF is now ready for the physics program, which includes a preliminary benchmark of the proposed idea. Based on the results obtained by dedicated Monte Carlo simulations and calculation, a suitable filtering of the neutron beam is expected to enable measurements of Maxwellian Averaged Cross Section (MACS) at different temperatures. To validate the feasibility of these studies we plan to start the measurement campaign by irradiating several isotopes whose MACS at different temperatures have recently been or are planned to be determined with high accuracy at n_TOF, as a function of energy in the two time-of-flight measurement stations. For instance, the physical cases of 88Sr(n,γ ), 89Y(n,γ ), 94Zr(n,γ ) and 64Ni(n,γ ) are discussed. As the neutron capture on 89Y produces a pure β -decay emitter, we plan to test the possibility to perform activation measurements on such class of isotopes as well. The expected results of these measurements would open the way to challenging measurements of MACS by the activation technique at n_TOF, for rare and/or exotic isotopes of interest for nuclear astrophysics
Gianpiero Gervino, Oliver Aberle, Ana-Paula Bernardes, Nicola Colonna, Sergio Cristallo, Maria Diakaki, et al. (2022). NEAR: A New Station to Study Neutron-Induced Reactions of Astrophysical Interest at CERN-n_TOF. UNIVERSE, 8(5), 1-15 [10.3390/universe8050255].
NEAR: A New Station to Study Neutron-Induced Reactions of Astrophysical Interest at CERN-n_TOF
Alice Manna;Cristian MassimiConceptualization
;Riccardo MucciolaSoftware
;
2022
Abstract
We present NEAR, a new experimental area at the CERN-n_TOF facility and a possible setup for cross section measurements of interest to nuclear astrophysics. This was recently realized with the aim of performing spectral-averaged neutron-capture cross section measurements by means of the activation technique. The recently commissioned NEAR station at n_TOF is now ready for the physics program, which includes a preliminary benchmark of the proposed idea. Based on the results obtained by dedicated Monte Carlo simulations and calculation, a suitable filtering of the neutron beam is expected to enable measurements of Maxwellian Averaged Cross Section (MACS) at different temperatures. To validate the feasibility of these studies we plan to start the measurement campaign by irradiating several isotopes whose MACS at different temperatures have recently been or are planned to be determined with high accuracy at n_TOF, as a function of energy in the two time-of-flight measurement stations. For instance, the physical cases of 88Sr(n,γ ), 89Y(n,γ ), 94Zr(n,γ ) and 64Ni(n,γ ) are discussed. As the neutron capture on 89Y produces a pure β -decay emitter, we plan to test the possibility to perform activation measurements on such class of isotopes as well. The expected results of these measurements would open the way to challenging measurements of MACS by the activation technique at n_TOF, for rare and/or exotic isotopes of interest for nuclear astrophysicsFile | Dimensione | Formato | |
---|---|---|---|
universe-08-00255-v3.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
3.66 MB
Formato
Adobe PDF
|
3.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.