A displacive-type mechanism, which accounts for the occurrence of ferroelectricity in most inorganic ferroelectrics, is rarely found in molecule-based ferroelectrics. Its role is often covered by the predominant order-disorder one. Herein, we report a lone-pair-electron-driven displacive-type ferroelectric organic-inorganic hybrid compound, [H(2)dmdap][SbCl5] (1; dmdap = N,N-dimethyl-1,3-diaminopropane). The structure of 1 features a typical zigzag chain of [SbCl5](infinity) containing cis-connected anionic octahedra. The compound undergoes a second-order paraelectric-ferroelectric phase transition at 143 K (P2(1)/c <-> Pc) with a saturation polarization of 1.36 mu C.cm(-2) and a coercive field of 3.5 kV.cm(-1) at 119 K. Theoretical study discloses the ferroelectricity mainly originating from the relative displacements of the Sb and Cl ions in the crystal lattice, which are driven by the 5s(2) lone-pair electrons of the Sb-III center. Furthermore, on the basis of analysis, possible routes are suggested to enhance ferroelectric polarization in this class of compounds.

Zhao, W., Shi, C., Stroppa, A., Di Sante, D., Cimpoesu, F., Zhang, W. (2016). Lone-Pair-Electron-Driven Ionic Displacements in a Ferroelectric Metal-Organic Hybrid. INORGANIC CHEMISTRY, 55(20), 10337-10342 [10.1021/acs.inorgchem.6b01545].

Lone-Pair-Electron-Driven Ionic Displacements in a Ferroelectric Metal-Organic Hybrid

Di Sante, D.;
2016

Abstract

A displacive-type mechanism, which accounts for the occurrence of ferroelectricity in most inorganic ferroelectrics, is rarely found in molecule-based ferroelectrics. Its role is often covered by the predominant order-disorder one. Herein, we report a lone-pair-electron-driven displacive-type ferroelectric organic-inorganic hybrid compound, [H(2)dmdap][SbCl5] (1; dmdap = N,N-dimethyl-1,3-diaminopropane). The structure of 1 features a typical zigzag chain of [SbCl5](infinity) containing cis-connected anionic octahedra. The compound undergoes a second-order paraelectric-ferroelectric phase transition at 143 K (P2(1)/c <-> Pc) with a saturation polarization of 1.36 mu C.cm(-2) and a coercive field of 3.5 kV.cm(-1) at 119 K. Theoretical study discloses the ferroelectricity mainly originating from the relative displacements of the Sb and Cl ions in the crystal lattice, which are driven by the 5s(2) lone-pair electrons of the Sb-III center. Furthermore, on the basis of analysis, possible routes are suggested to enhance ferroelectric polarization in this class of compounds.
2016
Zhao, W., Shi, C., Stroppa, A., Di Sante, D., Cimpoesu, F., Zhang, W. (2016). Lone-Pair-Electron-Driven Ionic Displacements in a Ferroelectric Metal-Organic Hybrid. INORGANIC CHEMISTRY, 55(20), 10337-10342 [10.1021/acs.inorgchem.6b01545].
Zhao, W.-P.; Shi, C.; Stroppa, A.; Di Sante, D.; Cimpoesu, F.; Zhang, W.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/892817
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact