Abstract: The high entropy alloy (HEA) of equiatomic composition CrNiFeCoMn and with FCC crystal structure was additively manufactured in a selective laser melting (SLM) process starting from mechanically alloyed powders. The as-produced alloy shows fine nitride and σ phase precipitates, which are Cr-rich and stable up to about 900 K. The precipitates increase in number and dimensions after long-period annealing at 900–1300 K, with a change in the HEA mechanical properties. Higher aging temperatures in the furnace, above 1300 K, turn the alloy into a single FCC structure, with the disappearance of the nitride and σ phase precipitates inside the grains and at the grain boundaries, but still with the presence of a finer Cr-rich nitride precipitation phase. These results suggest that the as-produced HEA is a supersaturated solid solution at low and intermediate temperature with nitrides and σ nanostructures.
Campari, E.G., Casagrande, A. (2022). Microstructural Study of CrNiCoFeMn High Entropy Alloy Obtained by Selective Laser Melting. MATERIALS, 15(16), 1-18 [10.3390/ma15165544].
Microstructural Study of CrNiCoFeMn High Entropy Alloy Obtained by Selective Laser Melting
Campari, Enrico Gianfranco
Writing – Review & Editing
;Casagrande, AngeloWriting – Original Draft Preparation
2022
Abstract
Abstract: The high entropy alloy (HEA) of equiatomic composition CrNiFeCoMn and with FCC crystal structure was additively manufactured in a selective laser melting (SLM) process starting from mechanically alloyed powders. The as-produced alloy shows fine nitride and σ phase precipitates, which are Cr-rich and stable up to about 900 K. The precipitates increase in number and dimensions after long-period annealing at 900–1300 K, with a change in the HEA mechanical properties. Higher aging temperatures in the furnace, above 1300 K, turn the alloy into a single FCC structure, with the disappearance of the nitride and σ phase precipitates inside the grains and at the grain boundaries, but still with the presence of a finer Cr-rich nitride precipitation phase. These results suggest that the as-produced HEA is a supersaturated solid solution at low and intermediate temperature with nitrides and σ nanostructures.File | Dimensione | Formato | |
---|---|---|---|
materials-15-05544.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
9.13 MB
Formato
Adobe PDF
|
9.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.