A desired outcome in the construction of a detached emerged breakwater is the formation of an accretionary salient in its lee to augment the beach, improve beach amenity and provide an additional buffer from storm waves. The extent to which this salient forms and its morphology are strongly controlled by the breakwater geometry with respect to the original shoreline, sediment availability, and local wave climate. The purpose of this paper is to identify how breakwater geometry and orientation of gaps between individual breakwaters alter the direction of waves entering the gaps and change the asymmetry of the salients. Four distinct breakwater sites along the Emilia-Romagna coastline in Northern Italy were chosen for a detailed field and desktop study comprising three-dimensional topographic and bathymetric surveys, sediment sampling, LiDAR flights and historical shoreline mapping. The orientations of the shorelines at these four sites range over 43°, resulting in different exposures to the dominant waves. The oblique orientations of the gaps between individual breakwater segments at three of the four sites effectively create a "gap window" between breakwaters favoring the exposure of short-period waves from the north and diminishing the effect of longer waves from the dominant east. Salients can be symmetrical despite an acute angle of approach of the dominant deep water waves where refraction is enhanced by offshore topography and breakwaters are parallel to the shore. Waves approaching normal to the gap window undergo less diffraction due to their shorter length relative to the gap window width and undergo less attenuation by breaking and bottom friction if they are locally generated and have short periods. Greater breaking-wave energy on the gap-facing slope of the salient can create shoreline and morphological asymmetry. The implication is that breakwater orientations can be designed or altered to selectively dampen or facilitate wave energy to enhance sediment transport in a desired direction, provided that breakwaters are not too far offshore and sediment availability is not restricted to affect salient formation. Adjusting exposure via gap orientation can create morphologies that cannot be inferred from process-dominant conditions.

Beach morphologies induced by breakwaters with different orientations

Armaroli C.;
2015

Abstract

A desired outcome in the construction of a detached emerged breakwater is the formation of an accretionary salient in its lee to augment the beach, improve beach amenity and provide an additional buffer from storm waves. The extent to which this salient forms and its morphology are strongly controlled by the breakwater geometry with respect to the original shoreline, sediment availability, and local wave climate. The purpose of this paper is to identify how breakwater geometry and orientation of gaps between individual breakwaters alter the direction of waves entering the gaps and change the asymmetry of the salients. Four distinct breakwater sites along the Emilia-Romagna coastline in Northern Italy were chosen for a detailed field and desktop study comprising three-dimensional topographic and bathymetric surveys, sediment sampling, LiDAR flights and historical shoreline mapping. The orientations of the shorelines at these four sites range over 43°, resulting in different exposures to the dominant waves. The oblique orientations of the gaps between individual breakwater segments at three of the four sites effectively create a "gap window" between breakwaters favoring the exposure of short-period waves from the north and diminishing the effect of longer waves from the dominant east. Salients can be symmetrical despite an acute angle of approach of the dominant deep water waves where refraction is enhanced by offshore topography and breakwaters are parallel to the shore. Waves approaching normal to the gap window undergo less diffraction due to their shorter length relative to the gap window width and undergo less attenuation by breaking and bottom friction if they are locally generated and have short periods. Greater breaking-wave energy on the gap-facing slope of the salient can create shoreline and morphological asymmetry. The implication is that breakwater orientations can be designed or altered to selectively dampen or facilitate wave energy to enhance sediment transport in a desired direction, provided that breakwaters are not too far offshore and sediment availability is not restricted to affect salient formation. Adjusting exposure via gap orientation can create morphologies that cannot be inferred from process-dominant conditions.
2015
Jackson N.L.; Harley M.D.; Armaroli C.; Nordstrom K.F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/892369
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact