When dynamic latent variable models are specified for discrete and/or mixed observations, problems related to the integration of the likelihood function arise since analytical solutions do not exist. A recently developed dimension-wise quadrature is applied to deal with these likelihoods with high-dimensional integrals. A comparison is performed with the pairwise likelihood method, one of the most often used remedies. Both a real data application and a simulation study show the superior performance of the dimension-wise quadrature with respect to the pairwise likelihood in estimating the parameters of the latent autoregressive process.

Silvia Bianconcini, Silvia Cagnone (2023). The dimension-wise quadrature estimation of dynamic latent variable models for count data. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 177(January), 1-7 [10.1016/j.csda.2022.107585].

The dimension-wise quadrature estimation of dynamic latent variable models for count data

Silvia Bianconcini;Silvia Cagnone
2023

Abstract

When dynamic latent variable models are specified for discrete and/or mixed observations, problems related to the integration of the likelihood function arise since analytical solutions do not exist. A recently developed dimension-wise quadrature is applied to deal with these likelihoods with high-dimensional integrals. A comparison is performed with the pairwise likelihood method, one of the most often used remedies. Both a real data application and a simulation study show the superior performance of the dimension-wise quadrature with respect to the pairwise likelihood in estimating the parameters of the latent autoregressive process.
2023
Silvia Bianconcini, Silvia Cagnone (2023). The dimension-wise quadrature estimation of dynamic latent variable models for count data. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 177(January), 1-7 [10.1016/j.csda.2022.107585].
Silvia Bianconcini; Silvia Cagnone
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/892243
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact