Carrying out OLAP analyses in hands-free scenarios requires lean forms of communication between the users and the system, based for instance on natural language. In this paper we introduce VOOL, a framework specifically devised for vocalizing the insights resulting from OLAP sessions. VOOL is self-configurable, extensible, and is aware of the user’s intentions expressed by OLAP operators. To avoid overwhelming the user with very long descriptions, we pursue the vocalization of selected insights automatically extracted from query results. These insights are detected by a set of modules, each returning a set of independent insights that characterize data. After describing and formalizing our approach, we evaluate it in terms of efficiency and effectiveness.
Insight-based vocalization of OLAP sessions
Matteo Francia;Enrico Gallinucci;Matteo Golfarelli;Stefano Rizzi
2022
Abstract
Carrying out OLAP analyses in hands-free scenarios requires lean forms of communication between the users and the system, based for instance on natural language. In this paper we introduce VOOL, a framework specifically devised for vocalizing the insights resulting from OLAP sessions. VOOL is self-configurable, extensible, and is aware of the user’s intentions expressed by OLAP operators. To avoid overwhelming the user with very long descriptions, we pursue the vocalization of selected insights automatically extracted from query results. These insights are detected by a set of modules, each returning a set of independent insights that characterize data. After describing and formalizing our approach, we evaluate it in terms of efficiency and effectiveness.File | Dimensione | Formato | |
---|---|---|---|
main.pdf
embargo fino al 28/08/2023
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
768.9 kB
Formato
Adobe PDF
|
768.9 kB | Adobe PDF | Visualizza/Apri Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.