We study the regularity of vector-valued local minimizers in W 1,p, p > 1, of the integral functional u → ∫ Ω [(μ2 + |Du|2)p/2 + f(x, u, |Du|)] dx, where Ω is an open set in ℝN and f is a continuous function, convex with respect to the last variable, such that 0 ≤ f(x, u, t) ≤ C(1 + tp). We prove that if f = f(x, t), or f = f(x, u, t) and p ≥ N, then local minimizers are locally Hölder continuous for any exponent less than 1. If f = f(x, u, t) and p < N then local minimizers are Hölder continuous for every exponent less than 1 in an open set Ω0 such that the Hausdorff dimension of Ω/Ω0 is less than N - p.

Cupini, G., Petti, R. (2003). Hölder continuity of local minimizers of vectorial integral functional. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 10(3), 269-285 [10.1007/s00030-003-1025-x].

Hölder continuity of local minimizers of vectorial integral functional

Cupini G.
;
2003

Abstract

We study the regularity of vector-valued local minimizers in W 1,p, p > 1, of the integral functional u → ∫ Ω [(μ2 + |Du|2)p/2 + f(x, u, |Du|)] dx, where Ω is an open set in ℝN and f is a continuous function, convex with respect to the last variable, such that 0 ≤ f(x, u, t) ≤ C(1 + tp). We prove that if f = f(x, t), or f = f(x, u, t) and p ≥ N, then local minimizers are locally Hölder continuous for any exponent less than 1. If f = f(x, u, t) and p < N then local minimizers are Hölder continuous for every exponent less than 1 in an open set Ω0 such that the Hausdorff dimension of Ω/Ω0 is less than N - p.
2003
Cupini, G., Petti, R. (2003). Hölder continuity of local minimizers of vectorial integral functional. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 10(3), 269-285 [10.1007/s00030-003-1025-x].
Cupini, G.; Petti, R.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/891723
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact