Let $\Lambda$ be the collection of all probability distributions for $(X,\widetilde{X})$, where $X$ is a fixed random vector and $\widetilde{X}$ ranges over all possible knockoff copies of $X$ (in the sense of \cite{CFJL18}). Three topics are developed in this paper: (i) A new characterization of $\Lambda$ is proved; (ii) A certain subclass of $\Lambda$, defined in terms of copulas, is introduced; (iii) The (meaningful) special case where the components of $X$ are conditionally independent is treated in depth. In real problems, after observing $X=x$, each of points (i)-(ii)-(iii) may be useful to generate a value $\widetilde{x}$ for $\widetilde{X}$ conditionally on $X=x$.
Berti, P., Dreassi, E., Leisen, F., Pratelli, L., Rigo, P. (2023). New perspectives on knockoffs construction. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 223(March), 1-14 [10.1016/j.jspi.2022.07.006].
New perspectives on knockoffs construction
Pietro Rigo
2023
Abstract
Let $\Lambda$ be the collection of all probability distributions for $(X,\widetilde{X})$, where $X$ is a fixed random vector and $\widetilde{X}$ ranges over all possible knockoff copies of $X$ (in the sense of \cite{CFJL18}). Three topics are developed in this paper: (i) A new characterization of $\Lambda$ is proved; (ii) A certain subclass of $\Lambda$, defined in terms of copulas, is introduced; (iii) The (meaningful) special case where the components of $X$ are conditionally independent is treated in depth. In real problems, after observing $X=x$, each of points (i)-(ii)-(iii) may be useful to generate a value $\widetilde{x}$ for $\widetilde{X}$ conditionally on $X=x$.File | Dimensione | Formato | |
---|---|---|---|
11585_891443.pdf
Open Access dal 03/08/2024
Descrizione: AAM
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
227.78 kB
Formato
Adobe PDF
|
227.78 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.