High temperature superconductivity is emerging as a solution for lightweight, cost-effective and high-power wind generators. Current injection and maintainment/sustainment in the field winding are obtained by metal current leads which, due to persistent heat conduction and joule loss, are responsible for a large part of the total cryogenic heat load. Slip rings, which further reduce the overall performance and reliability of the system, are also required. In this paper we assess the viability of the HTS dynamo and the rectifier flux pumps for energizing the field coils of the EcoSwing 3.6 MW HTS wind generator. Both a “warm” solution, with the rectifier at room temperature, and a “cold” solution, in which the latter is integrated into the cryostat, are investigated with regard to the rectifier flux pump. A comparison with the actual, state-of-the-art, system of the EcoSwing machine is carried out in terms of the total required cooling power and the ability to charge the HTS field winding up to the rated current. It is found that the dynamo flux pump, beside avoiding the need of slip rings, allows the reduction in the required cooling by about 74% with respect to the conventional current-leads-based solution.

A Numerical Study on the Energization of the Field Coils of a Full-Size Wind Turbine with Different Types of Flux Pumps / Giacomo Russo; Antonio Morandi. - In: ENERGIES. - ISSN 1996-1073. - ELETTRONICO. - 15:15(2022), pp. 5392.1-5392.18. [10.3390/en15155392]

A Numerical Study on the Energization of the Field Coils of a Full-Size Wind Turbine with Different Types of Flux Pumps

Giacomo Russo;Antonio Morandi
2022

Abstract

High temperature superconductivity is emerging as a solution for lightweight, cost-effective and high-power wind generators. Current injection and maintainment/sustainment in the field winding are obtained by metal current leads which, due to persistent heat conduction and joule loss, are responsible for a large part of the total cryogenic heat load. Slip rings, which further reduce the overall performance and reliability of the system, are also required. In this paper we assess the viability of the HTS dynamo and the rectifier flux pumps for energizing the field coils of the EcoSwing 3.6 MW HTS wind generator. Both a “warm” solution, with the rectifier at room temperature, and a “cold” solution, in which the latter is integrated into the cryostat, are investigated with regard to the rectifier flux pump. A comparison with the actual, state-of-the-art, system of the EcoSwing machine is carried out in terms of the total required cooling power and the ability to charge the HTS field winding up to the rated current. It is found that the dynamo flux pump, beside avoiding the need of slip rings, allows the reduction in the required cooling by about 74% with respect to the conventional current-leads-based solution.
2022
A Numerical Study on the Energization of the Field Coils of a Full-Size Wind Turbine with Different Types of Flux Pumps / Giacomo Russo; Antonio Morandi. - In: ENERGIES. - ISSN 1996-1073. - ELETTRONICO. - 15:15(2022), pp. 5392.1-5392.18. [10.3390/en15155392]
Giacomo Russo; Antonio Morandi
File in questo prodotto:
File Dimensione Formato  
2022_ENERGIES_A Numerical Study on the Energization of the Field Coils of a Full-Size Wind Turbine with Different Types of Flux Pumps.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/891402
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact