Wave-based techniques for room acoustics simulations are commonly applied to low frequency analysis and small-sized simplified environments. The constraints are generally the inherent computational cost and the challenging implementation of proper complex boundary conditions. Nevertheless, the application field of wave-based simulation methods has been extended in the latest research decades. With the aim of testing this potential, this work investigates the feasibility of a finite-difference time-domain (FDTD) code simulating large non-trivial geometries in wide frequency ranges. A representative sample of large coupled-volume opera houses allowed demonstration of the capability of the selected FDTD model to tackle such composite geometries up to 4 kHz. For such a demanding task, efficient calculation schemes and frequency-dependent boundary admittances are implemented in the simulation framework. The results of in situ acoustic measurements were used as benchmarks during the calibration process of three-dimensional virtual models. In parallel, acoustic simulations performed on the same halls through standard ray-tracing techniques enabled a systematic comparison between the two numerical approaches highlighting significant differences in terms of input data. The ability of the FDTD code to detect the typical acoustic scenarios occurring in coupled-volume halls is confirmed through multi-slope decay analysis and impulse responses’ spectral content.
Giulia Fratoni, B.H. (2022). Feasibility of a finite-difference time-domain model in large-scale acoustic simulations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 152(1), 330-341 [10.1121/10.0012218].
Feasibility of a finite-difference time-domain model in large-scale acoustic simulations
Giulia FratoniPrimo
;Dario D'Orazio
Ultimo
2022
Abstract
Wave-based techniques for room acoustics simulations are commonly applied to low frequency analysis and small-sized simplified environments. The constraints are generally the inherent computational cost and the challenging implementation of proper complex boundary conditions. Nevertheless, the application field of wave-based simulation methods has been extended in the latest research decades. With the aim of testing this potential, this work investigates the feasibility of a finite-difference time-domain (FDTD) code simulating large non-trivial geometries in wide frequency ranges. A representative sample of large coupled-volume opera houses allowed demonstration of the capability of the selected FDTD model to tackle such composite geometries up to 4 kHz. For such a demanding task, efficient calculation schemes and frequency-dependent boundary admittances are implemented in the simulation framework. The results of in situ acoustic measurements were used as benchmarks during the calibration process of three-dimensional virtual models. In parallel, acoustic simulations performed on the same halls through standard ray-tracing techniques enabled a systematic comparison between the two numerical approaches highlighting significant differences in terms of input data. The ability of the FDTD code to detect the typical acoustic scenarios occurring in coupled-volume halls is confirmed through multi-slope decay analysis and impulse responses’ spectral content.File | Dimensione | Formato | |
---|---|---|---|
2022_Fratoni-Hamilton-D_Orazio_FDTD-PREPRINT.pdf
accesso aperto
Descrizione: post print
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.