2,5-Furandicarboxylic acid (FDCA) is currently considered one of the most relevant bio-sourced building blocks, representing a fully sustainable competitor for terephthalic acid as well as the main component in green polymers such as poly(ethylene 2,5-furandicarboxylate) (PEF). The oxidation of biobased 5-hydroxymethylfurfural (HMF) represents the most straightforward approach to obtain FDCA, thus attracting the attention of both academia and industries, as testified by Avantium with the creation of a new plant expected to produce 5000 tons per year. Several approaches allow the oxidation of HMF to FDCA. Metal-mediated homogeneous and heterogeneous catalysis, metal-free catalysis, electrochemical approaches, light-mediated procedures, as well as biocatalytic processes share the target to achieve FDCA in high yield and mild conditions. This Review aims to give an up-to-date overview of the current developments in the main synthetic pathways to obtain FDCA from HMF, with a specific focus on process sustainability.
Totaro, G., Sisti, L., Marchese, P., Colonna, M., Romano, A., Gioia, C., et al. (2022). Current Advances in the Sustainable Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid. CHEMSUSCHEM, 15(13), 1-13 [10.1002/cssc.202200501].
Current Advances in the Sustainable Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid
Totaro, Grazia;Sisti, Laura;Marchese, Paola;Colonna, Martino;Romano, Angela;Gioia, Claudio
;Vannini, Micaela
;Celli, Annamaria
2022
Abstract
2,5-Furandicarboxylic acid (FDCA) is currently considered one of the most relevant bio-sourced building blocks, representing a fully sustainable competitor for terephthalic acid as well as the main component in green polymers such as poly(ethylene 2,5-furandicarboxylate) (PEF). The oxidation of biobased 5-hydroxymethylfurfural (HMF) represents the most straightforward approach to obtain FDCA, thus attracting the attention of both academia and industries, as testified by Avantium with the creation of a new plant expected to produce 5000 tons per year. Several approaches allow the oxidation of HMF to FDCA. Metal-mediated homogeneous and heterogeneous catalysis, metal-free catalysis, electrochemical approaches, light-mediated procedures, as well as biocatalytic processes share the target to achieve FDCA in high yield and mild conditions. This Review aims to give an up-to-date overview of the current developments in the main synthetic pathways to obtain FDCA from HMF, with a specific focus on process sustainability.File | Dimensione | Formato | |
---|---|---|---|
53-2022 ChemSusChem-from HFM to FDCA.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.