An emph{analytic pair} of dimension $n$ and {it center $V$} is a pair $(V,M)$ where $M$ is a complex manifold of (complex) dimension $n$ and $VssetM$ is a closed totally real analytic submanifold of dimension $n$. To an analytic pair $(V,M)$ we associate the class $PSHU[V,M]$ of the functions $u:Mto[0,pi/4[$ which are plurisubharmonic in $M$ and such that $u(p)=0$ for each $pinV$. If $PSHU[V,M]$ admits a maximal function $u$, the triple $(V,M,u)$ is said to be a {it maximal model}. After defining a pseudo-metric $E_{V,M}$ on the center $V$ of an analytic pair $(V,M)$, whose geometric properties are studied in ref{section:LaMetrica}, we prove (see Theorem ref{thm::MAMaximal}, Theorem ref {LI}) that maximal models provide a natural generalization of the Monge-Amp`ere models introduced by Lempert and Sz"oke in cite{article:LempertSzoke}.

G. Tomassini, S. Venturini (2009). Maximal Plurisubharmonic Models. INTERNATIONAL JOURNAL OF MATHEMATICS, 20, 1561-1581 [10.1142/S0129167X09005856].

Maximal Plurisubharmonic Models

VENTURINI, SERGIO
2009

Abstract

An emph{analytic pair} of dimension $n$ and {it center $V$} is a pair $(V,M)$ where $M$ is a complex manifold of (complex) dimension $n$ and $VssetM$ is a closed totally real analytic submanifold of dimension $n$. To an analytic pair $(V,M)$ we associate the class $PSHU[V,M]$ of the functions $u:Mto[0,pi/4[$ which are plurisubharmonic in $M$ and such that $u(p)=0$ for each $pinV$. If $PSHU[V,M]$ admits a maximal function $u$, the triple $(V,M,u)$ is said to be a {it maximal model}. After defining a pseudo-metric $E_{V,M}$ on the center $V$ of an analytic pair $(V,M)$, whose geometric properties are studied in ref{section:LaMetrica}, we prove (see Theorem ref{thm::MAMaximal}, Theorem ref {LI}) that maximal models provide a natural generalization of the Monge-Amp`ere models introduced by Lempert and Sz"oke in cite{article:LempertSzoke}.
2009
G. Tomassini, S. Venturini (2009). Maximal Plurisubharmonic Models. INTERNATIONAL JOURNAL OF MATHEMATICS, 20, 1561-1581 [10.1142/S0129167X09005856].
G. Tomassini; S. Venturini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/88988
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact